69 research outputs found

    What controls submarine channel development and the morphology of deltas entering deep-water fjords?

    Get PDF
    River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels whilst others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (\u3e200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan- deltas, whose steep gradient (11°-25°) approaches the sediment’s angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°-10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers

    Detailed monitoring reveals the nature of submarine turbidity currents

    Get PDF
    Seafloor sediment flows, called turbidity currents, form the largest sediment accumulations, deepest canyons, and longest channels on Earth. It was once thought that turbidity currents were impractical to measure in action, especially due to their ability to damage sensors in their path, but direct monitoring since the mid 2010s has measured them in detail. In this Review, we summarise knowledge of turbidity currents gleaned from this direct monitoring. Monitoring identifies triggering mechanisms from dilute river-plumes, and shows how rapid sediment accumulation can precondition slope failure, but the final triggers can be delayed and subtle. Turbidity currents are consistently more frequent than predicted by past sequence stratigraphic models, including at sites >300 km from any coast. Faster (>~1.5 m s–1) flows are driven by a dense near-bed layer at their front, whereas slower flows are entirely dilute. This frontal layer sometimes erodes large (>2.5 km3) volumes of sediment, yet maintains a near-uniform speed, leading to a travelling wave model. Monitoring shows that flows sculpt canyons and channels through fast-moving knickpoints, and how deposits originate. Emerging technologies with reduced cost and risk can lead to widespread monitoring of turbidity currents, so their sediment and carbon fluxes can be compared with other major global transport processes

    Author Correction: Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (Nature Communications, (2020), 11, 1, (3129), 10.1038/s41467-020-16861-x)

    Get PDF
    © 2020, The Author(s). The original version of this Article contained an error in the labelling of the cross-section in Fig. 2g and the vertical axis in Fig. 2b. This has been corrected in both the PDF and HTML versions of the Article

    Lessons learned from monitoring of turbidity currents and guidance for future platform designs

    Get PDF
    Turbidity currents transport globally significant volumes of sediment and organic carbon into the deep-sea and pose a hazard to critical infrastructure. Despite advances in technology, their powerful nature often damages expensive instruments placed in their path. These challenges mean that turbidity currents have only been measured in a few locations worldwide, in relatively shallow water depths (≪2 km). Here, we share lessons from recent field deployments about how to design the platforms on which instruments are deployed. First, we show how monitoring platforms have been affected by turbidity currents including instability, displacement, tumbling and damage. Second, we relate these issues to specifics of the platform design, such as exposure of large surface area instruments within a flow and inadequate anchoring or seafloor support. Third, we provide recommended improvements to improve design by simplifying mooring configurations, minimising surface area, and enhancing seafloor stability. Finally we highlight novel multi-point moorings that avoid interaction between the instruments and the flow, and flow-resilient seafloor platforms with innovative engineering design features, such as ejectable feet and ballast. Our experience will provide guidance for future deployments, so that more detailed insights can be provided into turbidity current behaviour, and in a wider range of settings

    Global monitoring data shows grain size controls turbidity current structure

    Get PDF
    The first detailed measurements from active turbidity currents have been made in the last few years, at multiple sites worldwide. These data allow us to investigate the factors that control the structure of these flows. By analyzing the temporal evolution of the maximum velocity of turbidity currents at different sites, we aim to understand whether there are distinct types of flow, or if a continuum exists between end-members; and to investigate the physical controls on the different types of observed flow. Our results show that the evolution of the maximum velocity of turbidity currents falls between two end-members. Either the events show a rapid peak in velocity followed by an exponential decay or, flows continue at a plateau-like, near constant velocity. Our analysis suggests that rather than triggers or system input type, flow structure is primarily governed by the grain size of the sediment available for incorporation into the flow

    Silt

    Full text link

    Quicksand

    Full text link

    Sand

    Full text link

    Casagrande Test

    Full text link
    corecore