6,204 research outputs found
A contribution to the discussion on the safety of air weapons
Firearms legislation in the UK stems from the Firearms Act 1968 with its definition of a firearm as a lethal barrelled weapon of any description. The Act allows certain exceptions to be held without licence, most notably air weapons although these are limited by The Firearms (Dangerous Air Weapons) Rules 1969 and related regulations to below 12 ft lb (16.3 J) for air rifles and below 6 ft lb (8.1 J) for air pistols. Despite this there are occasional fatalities, typically 1 or 2 each year in the UK, from legally owned air weapons. In the USA there are over 20,000 visits each year to emergency departments due to injuries from air weapons and paintball guns. Despite this, limited research appears to have been carried out into the safety of air weapons and the present study tries to address this.Fresh samples of animal tissue were obtained from an abattoir or butcher and were embedded in ballistic gelatin. Pig heart, lung, liver and shoulder were used. By firing pellets into gelatin alone and into the combination of the gelatin and animal tissue it was possible to compare gelatin as a model for these tissues. The depth of penetration was similar but the residual track appeared to remain more open in the animal tissue. Pellets penetrated completely through the organ, with total penetration of gelatin and organ being typically around 10–15 cm.Samples of pig, cow and chicken skin were placed in contact with the gelatin or embedded in the gelatin to simulate the effect of skin on penetration into a body. Chicken skin had no effect, pig skin stopped the pellet and cow skin was perforated by the pellet. If cow skin was embedded in the gelatin there was little effect on the total amount of penetration, but cow skin on the front surface of the gelatin reduced penetration by about 30%.Computed tomography was used to examine the pellet track and to calculate the volume of damage produced. However, due to the similar densities of gelatin and organ a technique had to be developed to differentiate phases. A barium salt paste was applied to outer surfaces and iodine solution or barium nitrate solution containing red food colouring was injected into the pellet track to enhance the contrast of the track. The track through the gelatin tended to enclose itself whereas the track through the organ remained more open, presumably due to the inhomogeneity of the fibrous nature of the tissue.Pellets were also fired at construction materials (wood, plasterboard and brick) and computed tomography used to determine the volume of damage created. Pellets perforated single layers of wood and plasterboard and would embed in a second layer. However, if the two layers were in contact the pellet did not penetrate the first layer. An air rifle pellet could therefore perforate house construction materials, although the resultant kinetic energy would be low and further damage would be limited.Some of the possible physical parameters are discussed that might help predict the degree of damage caused, but from this study it is not possible to define a limit which could be proposed as safe
Inactive alleles of cytochrome P450 2C19 may be positively selected in human evolution Genome evolution and evolutionary systems biology
© 2014 Janha et al.; licensee BioMed Central Ltd.Background: Cytochrome P450 CYP2C19 metabolizes a wide range of pharmacologically active substances and a relatively small number of naturally occurring environmental toxins. Poor activity alleles of CYP2C19 are very frequent worldwide, particularly in Asia, raising the possibility that reduced metabolism could be advantageous in some circumstances. The evolutionary selective forces acting on this gene have not previously been investigated. We analyzed CYP2C19 genetic markers from 127 Gambians and on 120 chromosomes from Yoruba, Europeans and Asians (Japanese + Han Chinese) in the Hapmap database. Haplotype breakdown was explored using bifurcation plots and relative extended haplotype homozygosity (REHH). Allele frequency differentiation across populations was estimated using the fixation index (FST) and haplotype diversity with coalescent models. Results: Bifurcation plots suggested conservation of alleles conferring slow metabolism (CYP2C19∗2 and ∗3). REHH was high around CYP2C19∗2 in Yoruba (REHH 8.3, at 133.3 kb from the core) and to a lesser extent in Europeans (3.5, at 37.7 kb) and Asians (2.8, at -29.7 kb). FST at the CYP2C19 locus was low overall (0.098). CYP2C19∗3 was an FST outlier in Asians (0.293), CYP2C19 haplotype diversity ST is low at the CYP2C19 locus, suggesting balancing selection overall. The biological factors responsible for these selective pressures are currently unknown. One possible explanation is that early humans were exposed to a ubiquitous novel toxin activated by CYP2C19. The genetic adaptation took place within the last 10,000 years which coincides with the development of systematic agricultural practices.This work was supported by the Medical Research Council Unit The Gambia and the European and Developing Countries Clinical Trials Partnership [grant number CG_ta_05_40204_018]
ECONOMIC EVALUATION OF AN ALTERNATIVE MARKETING SYSTEM FOR FEEDER CATTLE IN ALABAMA
Marketing,
Recommended from our members
Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney.
The epithelial-mesenchymal interactions required for kidney organogenesis are disrupted in mice lacking the integrin alpha8beta1. None of this integrin's known ligands, however, appears to account for this phenotype. To identify a more relevant ligand, a soluble integrin alpha8beta1 heterodimer fused to alkaline phosphatase (AP) has been used to probe blots and cDNA libraries. In newborn mouse kidney extracts, alpha8beta1-AP detects a novel ligand of 70-90 kD. This protein, named nephronectin, is an extracellular matrix protein with five EGF-like repeats, a mucin region containing a RGD sequence, and a COOH-terminal MAM domain. Integrin alpha8beta1 and several additional RGD-binding integrins bind nephronectin. Nephronectin mRNA is expressed in the ureteric bud epithelium, whereas alpha8beta1 is expressed in the metanephric mesenchyme. Nephronectin is localized in the extracellular matrix in the same distribution as the ligand detected by alpha8beta1-AP and forms a complex with alpha8beta1 in vivo. Thus, these results strongly suggest that nephronectin is a relevant ligand mediating alpha8beta1 function in the kidney. Nephronectin is expressed at numerous sites outside the kidney, so it may also have wider roles in development. The approaches used here should be generally useful for characterizing the interactions of novel extracellular matrix proteins identified through genomic sequencing projects
MULTIPLICITY-FREE PERMUTATION CHARACTERS OF COVERING GROUPS OF SPORADIC SIMPLE GROUPS
In this paper we classify all multiplicity-free faithful per-
mutation representations of the covering groups of the sporadic simple
groups. These results were obtained computationally, making extensive
use of the GAP library of character tables
Magnetic Flux Tube Reconnection: Tunneling Versus Slingshot
The discrete nature of the solar magnetic field as it emerges into the corona
through the photosphere indicates that it exists as isolated flux tubes in the
convection zone, and will remain as discrete flux tubes in the corona until it
collides and reconnects with other coronal fields. Collisions of these flux
tubes will in general be three dimensional, and will often lead to
reconnection, both rearranging the magnetic field topology in fundamental ways,
and releasing magnetic energy. With the goal of better understanding these
dynamics, we carry out a set of numerical experiments exploring fundamental
characteristics of three dimensional magnetic flux tube reconnection. We first
show that reconnecting flux tubes at opposite extremes of twist behave very
differently: in some configurations, low twist tubes slingshot while high twist
tubes tunnel. We then discuss a theory explaining these differences: by
assuming helicity conservation during the reconnection one can show that at
high twist, tunneled tubes reach a lower magnetic energy state than slingshot
tubes, whereas at low twist the opposite holds. We test three predictions made
by this theory. 1) We find that the level of twist at which the transition from
slingshot to tunnel occurs is about two to three times higher than predicted on
the basis of energetics and helicity conservation alone, probably because the
dynamics of the reconnection play a large role as well. 2) We find that the
tunnel occurs at all flux tube collision angles predicted by the theory. 3) We
find that the amount of magnetic energy a slingshot or a tunnel reconnection
releases agrees reasonably well with the theory, though at the high
resistivities we have to use for numerical stability, a significant amount of
magnetic energy is lost to diffusion, independent of reconnection.Comment: 21 pages, 15 figures, submitted to Ap
- …
