28 research outputs found
Multilocus Sequence Typing of Genital Chlamydia trachomatis in Norway Reveals Multiple New Sequence Types and a Large Genetic Diversity
Background: The Chlamydia trachomatis incidence rate in Finnmark, the most northern and sparsely populated county in Norway, has been twice the national average. This population based cross-sectional study among Finnmark high school students had the following aims: i) to examine distribution of multilocus sequence types (STs) of C. trachomatis in a previously unmapped area, ii) to compare chlamydia genetic diversity in Finnmark with that of two urban regions, and iii) to compare discriminatory capacity of multilocus sequence typing (MLST) with conventional ompA sequencing in a large number of chlamydia specimens. Methodology: ompA sequencing and a high-resolution MLST system based on PCR amplification and DNA sequencing of five highly variable genetic regions were used. Eighty chlamydia specimens from adolescents aged 15-20 years in Finnmark were collected in five high schools (n = 60) and from routine clinical samples in the laboratory (n = 20). These were compared to routine clinical samples from adolescents in Tromso (n = 80) and Trondheim (n = 88), capitals of North and Central Norway, respectively. Principal Findings: ompA sequencing detected 11 genotypes in 248 specimens from all three areas. MLST displayed 50 STs providing a five-fold higher resolution. Two-thirds of all STs were novel. The common ompA E/Bour genotype comprised 46% and resolved into 24 different STs. MLST identified the Swedish new variant of C. trachomatis not discriminated by ompA sequencing. Simpson's discriminatory index (D) was 0.93 for MLST, while a corrected D-c was 0.97. There were no statistically significant differences in ST genetic diversity between geographic areas. Finnmark had an atypical genovar distribution with G being predominant. This was mainly due to expansion of specific STs of which the novel ST161 was unique for Finnmark. Conclusions/Significance: MLST revealed multiple new STs and a larger genetic diversity in comparison to ompA sequencing and proved to be a useful tool in molecular epidemiology of chlamydia infections.Manuscript title: High-resolution Multilocus Sequence Typing of Chlamydia trachomatis reveals multiple new genotypes in North and Central Norwa
Chlamydia trachomatis strains show specific clustering for men who have sex withmen compared to heterosexual populations
f High-resolution genotyping of Chlamydia trachomatis improves the characterization of strains infecting different patient groups and sexual networks. In this study, multilocus sequence typing (MLST) and ompA sequence determination were used for an analysis of C. trachomatis strains from 203 men who have sex with men (MSM) from Sweden, the Netherlands, and the United States. The results obtained were compared with data from 153 heterosexual women from Sweden and the Netherlands. The overlap in MLST/ompA profiles between MSM from Sweden and the Netherlands was 68%, while the overlap between heterosexual populations from these countries was only 18%. The distribution of genotypes in MSM from the United States was less similar to that in MSM from the European countries, with 45% and 46% overlaps for MSM in Sweden and the Netherlands, respectively. Minimum-spanning-tree analysis of MLST/ompA sequence types identified two large clusters that contained almost exclusively samples from MSM and comprised 74% of all MSM samples. Three other clusters were predominated by samples from women but also contained MSM specimens. Of 19 detected variants of the MLST target CT144, three variants were highly associated with MSM. Our study supports the hypotheses of both tissue tropism as well as epidemiological network structures as explanations for the linkage between specific genetic variants and sexual orientation
Typing of Lymphogranuloma Venereum Chlamydia trachomatis Strains
We analyzed by multilocus sequence typing 77 lymphogranuloma venereum Chlamydia trachomatis strains from men who have sex with men in Europe and the United States. Specimens from an outbreak in 2003 in Europe were monoclonal. In contrast, several strains were in the United States in the 1980s, including a variant from Europe
Multilocus Sequence Typing of Urogenital Chlamydia trachomatis From Patients With Different Degrees of Clinical Symptoms
High Resolution Genotyping of Chlamydia trachomatis
Chlamydia trachomatis is an obligate intracellular bacterium of major human health concern, causing urogential chlamydia infections, lymphogranuloma venereum (LGV) and trachoma. Chlamydia is one of the most common sexually transmitted infections worldwide and can cause infertility. In the first four papers described herein we used a high resolution multilocus sequence typing (MLST) system to investigate the epidemiology of C. trachomatis, and showed that MLST is superior to conventional ompA genotyping with respect to resolution. In the fifth paper we simplified the methodology by developing and validating a multilocus typing (MLT) DNA microarray based on the MLST system. In more detail, MLST analysis of consecutive specimens from 2006 in Örebro County in Sweden, and comparison to specimens from 1999-2000, showed that the new variant C. trachomatis (nvCT) is monoclonal and likely has appeared in recent years. MLST analysis of LGV specimens from men who have sex with men (MSM) showed that the increase of LGV in Europe in the last decade indeed was a clonal outbreak, contrary to the USA where LGV might have been present all along. In the third paper, clinical symptoms could not be correlated with the MLST genotypes, suggesting, together with the combined results of all previous studies, that bacterial factors, if important, need to be understood in the context of host factors. MLST analysis of specimens from a high incidence C. trachomatis area in North Norway revealed interesting epidemiological details concerning unusual genetic variants, the nvCT and MSM, but found no significant difference in genetic diversity compared to two other geographic areas in Norway. Lastly, we developed a MLT array that provides high resolution while being rapid and cost-effective, which makes it an interesting alternative for C. trachomatis genotyping. In conclusion, the MLST system and the MLT array have proven to be useful tools and should now be applied in further investigations to improve our understanding of C. trachomatis epidemiology
Guidelines for High-Resolution Genotyping of Chlamydia trachomatis Using Multilocus Sequence Analysis
High Resolution Genotyping of <em>Chlamydia trachomatis</em> [Elektronisk resurs]
Chlamydia trachomatis is an obligate intracellular bacterium of major human health concern, causing urogential chlamydia infections, lymphogranuloma venereum (LGV) and trachoma. Chlamydia is one of the most common sexually transmitted infections worldwide and can cause infertility. In the first four papers described herein we used a high resolution multilocus sequence typing (MLST) system to investigate the epidemiology of C. trachomatis, and showed that MLST is superior to conventional ompA genotyping with respect to resolution. In the fifth paper we simplified the methodology by developing and validating a multilocus typing (MLT) DNA microarray based on the MLST system. In more detail, MLST analysis of consecutive specimens from 2006 in Örebro County in Sweden, and comparison to specimens from 1999-2000, showed that the new variant C. trachomatis (nvCT) is monoclonal and likely has appeared in recent years. MLST analysis of LGV specimens from men who have sex with men (MSM) showed that the increase of LGV in Europe in the last decade indeed was a clonal outbreak, contrary to the USA where LGV might have been present all along. In the third paper, clinical symptoms could not be correlated with the MLST genotypes, suggesting, together with the combined results of all previous studies, that bacterial factors, if important, need to be understood in the context of host factors. MLST analysis of specimens from a high incidence C. trachomatis area in North Norway revealed interesting epidemiological details concerning unusual genetic variants, the nvCT and MSM, but found no significant difference in genetic diversity compared to two other geographic areas in Norway. Lastly, we developed a MLT array that provides high resolution while being rapid and cost-effective, which makes it an interesting alternative for C. trachomatis genotyping. In conclusion, the MLST system and the MLT array have proven to be useful tools and should now be applied in further investigations to improve our understanding of C. trachomatis epidemiology. </p
