84 research outputs found
On neonatal asphyxia : clinical and animal studies including development of a simple, safe method for therapeutic hypothermia with global applicability
Recent randomized clinical trials show that hypothermia can decrease brain dysfunction in newborn infants at risk for hypoxic-ischemic encephalopathy. One goal of the present study was to develop an alternative to current relatively complex and expensive cooling methods dependent on electricity and continuous water supply. An effective and cheap cooling method for global implementation both during transportation and in hospitals based on Phase Changing Material (PCM) was developed. It was found that a specific Glauber salt composition fulfilled safety, cooling and easy of handling criteria and the material was tested in piglets and newborn babies with results comparable to those with conventional cooling. A second goal was to evaluate near red infrared spectroscopy (NIRS) for non-invasive in vivo monitoring of cortical vascular haemodynamic responses to sensory stimuli. NIRS revealed that infants respond more strongly to their mothers’ faces than to that of strangers. Preliminary results suggest NIRS may become a useful method for monitoring effects of hypoxic ischemia and its treatment by cooling. When newborn infants at risk are born outside a hospital with cooling facilities, cooling during transport may be beneficial. We found that passive induction of hypothermia during transport is possible, although temperatures of the infants will vary depending on climate and other circumstances, and that such passive measures can lead to unintended excessive cooling necessitating careful monitoring of body temperature. The PCM cooling material was tested as an alternative to water bottle cooling in a piglet hypoxic ischemia model and found to be effective and possibly leading to a more stable target temperature. To better understand how hypoxic ischemia affects different brain areas, brains from piglets subjected to standardized hypoxic ischemia and treatment protocols consisting of cooling, xenon or a combination thereof were analysed with respect to transcriptional activity of key genes, using quantitative in situ hybridization. Analysing mRNA species coding for BDNF, MANF, HSP70, GFAP, NgR, MAP2, LDH-A and LDH-B revealed marked effects of the hypoxic ischemic insult, partial counteraction of mRNA alterations by the treatments and differences between brain areas, as well as possibly between core and mantle regions. In a separate set of animals, different cooling temperatures were compared with respect to the activity of the same set of genes. Cooling to 33°C appeared to be advantageous, while cooling to a rectal temperature of 30°C appeared to be associated with some unwanted effects. It is concluded that cooling can be better controlled and at the same time more easily be made globally available using PCM material, and that cooling partially counteracts some, but not all changes of a selected set of brain mRNA species observed 2-3 days after hypoxic ischemia in a piglet model
Topology by Design in Magnetic nano-Materials: Artificial Spin Ice
Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structures whose geometry can be chosen at will, and whose elementary
degrees of freedom can be characterized directly. They were introduced at first
to study frustration in a controllable setting, to mimic the behavior of spin
ice rare earth pyrochlores, but at more useful temperature and field ranges and
with direct characterization, and to provide practical implementation to
celebrated, exactly solvable models of statistical mechanics previously devised
to gain an understanding of degenerate ensembles with residual entropy. With
the evolution of nano--fabrication and of experimental protocols it is now
possible to characterize the material in real-time, real-space, and to realize
virtually any geometry, for direct control over the collective dynamics. This
has recently opened a path toward the deliberate design of novel, exotic
states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an
introduction to the material, the early works, and then, by reporting on more
recent results, we will proceed to describe the new direction, which includes
the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
Fecal carriage and clonal dissemination of blaNDM-1 carrying Klebsiella pneumoniae sequence type 147 at an intensive care unit in Lao PDR
OBJECTIVES: Carbapenemase-producing Enterobacterales (CPE) are high priority targets of global antimicrobial surveillance. Herein, we determined the colonization rate of CPE on admission to intensive care units in Vientiane, Lao PDR in August-September 2019. METHODS: Data regarding clinical conditions, infection control, and antibiotic usage were collected during admission. Rectal swab samples (n = 137) collected during admission were inoculated to selective chromogenic agars, followed by confirmatory tests for extended-spectrum beta-lactamases and carbapenemases. All CPE isolates were sequenced on Illumina (HiSeq2500), reads assembled using SPAdes 3.13, and the draft genomes used to query a database (https://www.genomicepidemiology.org) for resistome, plasmid replicons, and sequence types (ST). Optical DNA mapping (ODM) was used to characterize plasmids and to determine location of resistance genes. Minimum spanning tree was generated using the Bacterial Isolate Genome Sequence database (BIGSdb) and annotated using iTOL. RESULT: From 47 Enterobacterales isolated on selective agars, K. pneumoniae (25/47) and E. coli (12/47) were the most prevalent species, followed by K aerogenes (2/47), K. variicola (1/47), and K. oxytoca (1/47). The overall prevalence of ESBLs was 51.0%; E. coli 83.3% (10/12) and Klebsiella spp. 41.3% (12/29). Twenty percent of the K. pneumoniae (5/25) isolates were carbapenem-resistant, and 4/5 contained the blaNDM-1 gene. All blaNDM-1 isolates belonged to ST147 and were indistinguishable with cgMLST. ODM showed that the blaNDM-1 gene was located on identical plasmids in all isolates. CONCLUSION:\ua0The prevalence of ESBL-producing Enterobacterales was high, while carbapenemases were less common. However, the detection of clonal dissemination of blaNDM-1-producing K. pneumoniae isolates in one of the intensive care units calls for vigilance. Stringent infection prevention and antimicrobial stewardship strategies are highly important measures
Clonal spread of carbapenem-resistant Klebsiella pneumoniae among patients at admission and discharge at a Vietnamese neonatal intensive care unit
Background The increasing prevalence of carbapenem-resistant Enterobacteriaceae (CRE) is a growing problem globally, particularly in low- to middle-income countries (LMICs). Previous studies have shown high rates of CRE colonisation among patients at hospitals in LMICs, with increased risk of hospital-acquired infections. Methods We isolated carbapenem-resistant Klebsiella pneumoniae (CRKP) from faecal samples collected in 2017 from patients at admission and discharge at a Vietnamese neonatal intensive care unit (NICU). 126 CRKP were whole-genome sequenced. The phylogenetic relationship between the isolates and between clinical CRKP isolates collected in 2012-2018 at the same hospital were investigated. Results NDM-type carbapenemase-(61%) and KPC-2-encoding genes (41%) were the most common carbapenem resistance genes observed among the admission and discharge isolates. Most isolates (56%) belonged to three distinct clonal clusters of ST15, carrying bla(KPC-2), bla(NDM-1) and bla(NDM-4), respectively. Each cluster also comprised clinical isolates from blood collected at the study hospital. The most dominant ST15 clone was shown to be related to isolates collected from the same hospital as far back as in 2012. Conclusions Highly resistant CRKP were found colonising admission and discharge patients at a Vietnamese NICU, emphasising the importance of continued monitoring. Whole-genome sequencing revealed a population of CRKP consisting mostly of ST15 isolates in three clonally related clusters, each related to blood isolates collected from the same hospital. Furthermore, clinical isolates collected from previous years (dating back to 2012) were shown to likely be clonally descended from ST15 isolates in the largest cluster, suggesting a successful hospital strain which can colonise inpatients
Prevalence of carbapenem resistance and its potential association with antimicrobial use in humans and animals in rural communities in Vietnam
Background
Vietnam and Southeast Asia are hotspots for antimicrobial resistance; however, little is known on the prevalence of carriage of carbapenem resistance in non-hospitalized humans and in animals. Carbapenem-resistant Enterobacteriaceae (CRE), particularly Escherichia coli (CREC) and Klebsiella pneumoniae (CRKP) and also Acinetobacter baumannii (CRAB) are emerging threats worldwide.
Methods
We investigated healthy humans (n = 652), chickens (n = 237), ducks (n = 150) and pigs (n = 143) in 400 small-scale farms in the Mekong Delta of Vietnam. Samples (rectal swabs, faecal swabs) were investigated for carriage of CRE/CRAB and were further characterized phenotypically and genotypically.
Results
In the Mekong Delta of Vietnam, the prevalence of CRE isolates in human rectal swabs was 0.6%, including 4 CREC and 1 CRKP. One pig was infected with CREC (prevalence 0.7%). CRAB was isolated from chickens (n = 4) (prevalence 2.1%) and one duck (prevalence 0.7%). CRKP was isolated from a human who was also colonized with CREC. The CRKP strain (ST16), from an 80 year-old person with pneumonia under antimicrobial treatment, genetically clustered with clinical strains isolated in a hospital outbreak in southern Vietnam. The prevalence of CRE was higher among humans that had used antimicrobials within 90 days of the sampling date than those had not (4.2% versus 0.2%) (P = 0.005). All CRE/CRAB strains were MDR, although they were susceptible to colistin and neomycin. The carbapenemase genes identified in study strains were blaNDM and blaOXA.
Conclusions
The finding of a CRKP strain clustering with previous hospital outbreak raises concerns about potential transmission of carbapenem-resistant organisms from hospital to community settings or vice-versa
Challenges in the Implementation of the NeoOBS Study, a Global Pragmatic Observational Cohort Study, to Investigate the Aetiology and Management of Neonatal Sepsis in the Hospital Setting
Neonatal sepsis is a significant cause of mortality and morbidity in low- and middle-income countries. To deliver high-quality data studies and inform future trials, it is crucial to understand the challenges encountered when managing global multi-centre research studies and to identify solutions that can feasibly be implemented in these settings. This paper provides an overview of the complexities faced by diverse research teams in different countries and regions, together with actions implemented to achieve pragmatic study management of a large multi-centre observational study of neonatal sepsis. We discuss specific considerations for enrolling sites with different approval processes and varied research experience, structures, and training. Implementing a flexible recruitment strategy and providing ongoing training were necessary to overcome these challenges. We emphasize the attention that must be given to designing the database and monitoring plans. Extensive data collection tools, complex databases, tight timelines, and stringent monitoring arrangements can be problematic and might put the study at risk. Finally, we discuss the complexities added when collecting and shipping isolates and the importance of having a robust central management team and interdisciplinary collaborators able to adapt easily and make swift decisions to deliver the study on time and to target. With pragmatic approaches, appropriate training, and good communication, these challenges can be overcome to deliver high-quality data from a complex study in challenging settings through a collaborative research network
Challenges in the implementation of the NeoOBS study, a global pragmatic observational cohort study, to investigate the aetiology and management of neonatal sepsis in the hospital setting
Neonatal sepsis is a significant cause of mortality and morbidity in low- and middle-income countries. To deliver high-quality data studies and inform future trials, it is crucial to understand the challenges encountered when managing global multi-centre research studies and to identify solutions that can feasibly be implemented in these settings. This paper provides an overview of the complexities faced by diverse research teams in different countries and regions, together with actions implemented to achieve pragmatic study management of a large multi-centre observational study of neonatal sepsis. We discuss specific considerations for enrolling sites with different approval processes and varied research experience, structures, and training. Implementing a flexible recruitment strategy and providing ongoing training were necessary to overcome these challenges. We emphasize the attention that must be given to designing the database and monitoring plans. Extensive data collection tools, complex databases, tight timelines, and stringent monitoring arrangements can be problematic and might put the study at risk. Finally, we discuss the complexities added when collecting and shipping isolates and the importance of having a robust central management team and interdisciplinary collaborators able to adapt easily and make swift decisions to deliver the study on time and to target. With pragmatic approaches, appropriate training, and good communication, these challenges can be overcome to deliver high-quality data from a complex study in challenging settings through a collaborative research network
Mitigating antimicrobial resistance through effective hospital wastewater management in low- and middle-income countries
Hospital wastewater (HWW) is a significant environmental and public health threat, containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This threat is of particular concern in low- and middle-income countries (LMICs), where untreated effluents are often used for irrigating vegetables crops, leading to direct and indirect human exposure. Despite being a potential hotspot for the spread of antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily target conventional pollutants and lack effective standards for monitoring the removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. Addressing this requires targeted interventions, including cost-effective treatment solutions, robust AMR monitoring protocols, and policy-driven strategies tailored to LMICs. This perspective calls for a paradigm shift in HWW management in LMIC, emphasizing the broader implementation of onsite treatment systems, which are currently rare. Key recommendations include developing affordable and contextually adaptable technologies for eliminating ARB and ARGs and enforcing local regulations for AMR monitoring and control in wastewater. Addressing these challenges is essential for protecting public health, preventing the environmental spread of resistance, and contributing to a global effort to preserve the efficacy of antibiotics. Recommendations include integrating scalable onsite technologies, leveraging local knowledge, and implementing comprehensive AMR-focused regulatory frameworks
Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: insights from the NeoAMR network.
OBJECTIVE: To gain an understanding of the variation in available resources and clinical practices between neonatal units (NNUs) in the low-income and middle-income country (LMIC) setting to inform the design of an observational study on the burden of unit-level antimicrobial resistance (AMR). DESIGN: A web-based survey using a REDCap database was circulated to NNUs participating in the Neonatal AMR research network. The survey included questions about NNU funding structure, size, admission rates, access to supportive therapies, empirical antimicrobial guidelines and period prevalence of neonatal blood culture isolates and their resistance patterns. SETTING: 39 NNUs from 12 countries. PATIENTS: Any neonate admitted to one of the participating NNUs. INTERVENTIONS: This was an observational cohort study. RESULTS: The number of live births per unit ranged from 513 to 27 700 over the 12-month study period, with the number of neonatal cots ranging from 12 to 110. The proportion of preterm admissions <32 weeks ranged from 0% to 19%, and the majority of units (26/39, 66%) use Essential Medicines List 'Access' antimicrobials as their first-line treatment in neonatal sepsis. Cephalosporin resistance rates in Gram-negative isolates ranged from 26% to 84%, and carbapenem resistance rates ranged from 0% to 81%. Glycopeptide resistance rates among Gram-positive isolates ranged from 0% to 45%. CONCLUSION: AMR is already a significant issue in NNUs worldwide. The apparent burden of AMR in a given NNU in the LMIC setting can be influenced by a range of factors which will vary substantially between NNUs. These variations must be considered when designing interventions to improve neonatal mortality globally
- …
