184 research outputs found

    Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery

    Get PDF
    International audienceThe phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of Li(x)CoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits

    The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    Get PDF
    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome

    Do agricultural knowledge and innovation systems have the dynamic capabilities to guide the digital transition of short food supply chains?

    Get PDF
    The digitalization of agriculture generates a new environment for the actors involved in agrifood production. In such a context, Agricultural Knowledge and Innovation Systems (AKISs) face the challenge of reconsidering their operational paradigms, redefining priorities, and designing strategies to achieve new aims. To do so, the actors participating in AKISs should develop and exploit a set of competencies known as dynamic capabilities, including the aptitude to sense the change in the external environment, the capacity to seize the opportunities that this change creates, and an ability to transform and adapt themselves to the new conditions that digitalization generates. In this study, using as examples the AKISs operating in Greece and Italy, we aimed to uncover if and how actors participating in these systems attempt and manage to deploy such capabilities. Based on a qualitative approach and drawing on data from two workshops, we discovered that seizing the opportunities sensed is a challenging task for AKIS actors. Our results also indicate that knowledge is a pivotal resource for AKISs, allowing actors to enhance their transformative capacity. However, to create a "collective" knowledge base, AKISs should ensure a functional connection between stakeholders and strengthen the roles of actors not actively engaged with the system, like public advisory organizations, universities, and technology providers

    Agricultural and food business dynamics in the Mediterranean region: Identifying key indicators for sustainable supply chain systems originated by small-scale farming production

    Get PDF
    Fruit and vegetables play a crucial role in ensuring food and nutrition security, and developing more sustainable value chains in agriculture and the agri-food sector. To support a greater supply of fruit and vegetables, small farmers' production is fundamental and needs to be integrated into stable value chains to maintain market, logistics and quality conditions. This article develops a theoretical framework based on the conditions, strategies and performances of supply chain systems, combined with the elicitation of expert opinion, to identify key variables for the specific analysis of fruit and vegetable supply chains. Empirical data was retrieved from eight supply chains in five Mediterranean countries to identify the most relevant issues related to their conditions, strategies and performances. Three different types of supply chains were included: 1) Short food supply chains, 2) Green public procurement, and 3) Export-oriented supply chains. This research made it possible to identify key indicators for the analysis of fruit and vegetable supply chain system dynamics. The variables identified in this study may contribute to prospective research for the assessment of fruit and vegetable supply chain sustainability and to the development of policies that encourage the adoption of environmentally-friendly and socially-responsible practices, thus contributing to the long-term sustainability of Mediterranean fruit and vegetables supply chains

    Transient Photoinduced Absorption in Ultrathin As-grown Nanocrystalline Silicon Films

    Get PDF
    We have studied ultrafast carrier dynamics in nanocrystalline silicon films with thickness of a few nanometers where boundary-related states and quantum confinement play an important role. Transient non-degenerated photoinduced absorption measurements have been employed to investigate the effects of grain boundaries and quantum confinement on the relaxation dynamics of photogenerated carriers. An observed long initial rise of the photoinduced absorption for the thicker films agrees well with the existence of boundary-related states acting as fast traps. With decreasing the thickness of material, the relaxation dynamics become faster since the density of boundary-related states increases. Furthermore, probing with longer wavelengths we are able to time-resolve optical paths with faster relaxations. This fact is strongly correlated with probing in different points of the first Brillouin zone of the band structure of these materials

    Cortical microtubule arrays are initiated from a nonrandom prepattern driven by atypical microtubule initiation

    Get PDF
    The ordered arrangement of cortical microtubules in growing plant cells is essential for anisotropic cell expansion and, hence, for plant morphogenesis. These arrays are dismantled when the microtubule cytoskeleton is rearranged during mitosis and reassembled following completion of cytokinesis. The reassembly of the cortical array has often been considered as initiating from a state of randomness, from which order arises at least partly through self-organizing mechanisms. However, some studies have shown evidence for ordering at early stages of array assembly. To investigate how cortical arrays are initiated in higher plant cells, we performed live-cell imaging studies of cortical array assembly in tobacco (Nicotiana tabacum) Bright Yellow-2 cells after cytokinesis and drug-induced disassembly. We found that cortical arrays in both cases did not initiate randomly but with a significant overrepresentation of microtubules at diagonal angles with respect to the cell axis, which coincides with the predominant orientation of the microtubules before their disappearance from the cell cortex in preprophase. In Arabidopsis (Arabidopsis thaliana) root cells, recovery from drug-induced disassembly was also nonrandom and correlated with the organization of the previous array, although no diagonal bias was observed in these cells. Surprisingly, during initiation, only about one-half of the new microtubules were nucleated from locations marked by green fluorescent protein-¿-tubulin complex protein2-tagged ¿-nucleation complexes (¿-tubulin ring complex), therefore indicating that a large proportion of early polymers was initiated by a noncanonical mechanism not involving ¿-tubulin ring complex. Simulation studies indicate that the high rate of noncanonical initiation of new microtubules has the potential to accelerate the rate of array repopulation

    Thermal degradation kinetics and decomposition mechanism of PBSu nanocomposites with silica-nanotubes and strontium hydroxyapatite nanorods

    Get PDF
    Novel poly(butylene succinate) (PBSu) nanocomposites containing 5 and 20 wt% mesoporous strontium hydroxyapatite nanorods (SrHNRs) and silica nanotubes (SiNTs) were prepared by melt-mixing. A systematic investigation of the thermal stability and decomposition kinetics of PBSu was performed using pyrolysis-gas chromatography–mass spectroscopy (Py-GC–MS) and thermogravimetry (TG). Thorough studies of evolving decomposition compounds along with the isoconversional and model-fitting analysis of mass loss data led to the proposal of a decomposition mechanism for PBSu. Moreover, the effects of SrHNRs and SiNTs on the thermal stability and decomposition kinetics of PBSu were also examined in detail. The complementary use of these techniques revealed that the incorporation of SiNTs in PBSu does not induce significant effects neither on its thermal stability nor on its decomposition mechanism. In contrast, the addition of SrHNRs resulted in the catalysis of the initial decomposition steps of PBSu and also in modified decomposition mechanisms and activation energies. The evolving gaseous products of PBSu and their evolution pattern in the SiNT nanocomposites were the same as in neat PBSu, while they were slightly modified for the SrHNR nanocomposites, confirming the findings from thermogravimetric analysis

    Microbleed Prevalence and Burden in Anticoagulant-Associated Intracerebral Bleed

    Get PDF
    Prior studies suggest an association between Vitamin K antagonists (VKA) and cerebral microbleeds (CMBs); less is known about nonvitamin K oral anticoagulants (NOACs). In this observational study we describe CMB profiles in a multicenter cohort of 89 anticoagulation-related intracerebral hemorrhage (ICH) patients. CMB prevalence was 51% (52% in VKA-ICH, 48% in NOAC-ICH). NOAC-ICH patients had lower median CMB count [2(IQR:1–3) vs. 7(4–11); P \u3c 0.001]; ≥5 CMBs were less prevalent in NOAC-ICH (4% vs. 31%, P = 0.006). This inverse association between NOAC exposure and high CMB count persisted in multivariable logistic regression models adjusting for potential confounders (OR 0.10, 95%CI: 0.01–0.83; P = 0.034)

    Cortical microtubule arrays are initiated from a nonrandom prepattern driven by atypical microtubule initiation

    Get PDF
    The ordered arrangement of cortical microtubules in growing plant cells is essential for anisotropic cell expansion and, hence, for plant morphogenesis. These arrays are dismantled when the microtubule cytoskeleton is rearranged during mitosis and reassembled following completion of cytokinesis. The reassembly of the cortical array has often been considered as initiating from a state of randomness, from which order arises at least partly through self-organizing mechanisms. However, some studies have shown evidence for ordering at early stages of array assembly. To investigate how cortical arrays are initiated in higher plant cells, we performed live-cell imaging studies of cortical array assembly in tobacco (Nicotiana tabacum) Bright Yellow-2 cells after cytokinesis and drug-induced disassembly. We found that cortical arrays in both cases did not initiate randomly but with a significant overrepresentation of microtubules at diagonal angles with respect to the cell axis, which coincides with the predominant orientation of the microtubules before their disappearance from the cell cortex in preprophase. In Arabidopsis (Arabidopsis thaliana) root cells, recovery from drug-induced disassembly was also nonrandom and correlated with the organization of the previous array, although no diagonal bias was observed in these cells. Surprisingly, during initiation, only about one-half of the new microtubules were nucleated from locations marked by green fluorescent protein-γ-tubulin complex protein2-tagged γ-nucleation complexes (γ-tubulin ring complex), therefore indicating that a large proportion of early polymers was initiated by a noncanonical mechanism not involving γ-tubulin ring complex. Simulation studies indicate that the high rate of noncanonical initiation of new microtubules has the potential to accelerate the rate of array repopulation

    Lateral electrical transport, optical properties and photocurrent measurements in two-dimensional arrays of silicon nanocrystals embedded in SiO2

    Get PDF
    In this study we investigate the electronic transport, the optical properties, and photocurrent in two-dimensional arrays of silicon nanocrystals (Si NCs) embedded in silicon dioxide, grown on quartz and having sizes in the range between less than 2 and 20 nm. Electronic transport is determined by the collective effect of Coulomb blockade gaps in the Si NCs. Absorption spectra show the well-known upshift of the energy bandgap with decreasing NC size. Photocurrent follows the absorption spectra confirming that it is composed of photo-generated carriers within the Si NCs. In films containing Si NCs with sizes less than 2 nm, strong quantum confinement and exciton localization are observed, resulting in light emission and absence of photocurrent. Our results show that Si NCs are useful building blocks of photovoltaic devices for use as better absorbers than bulk Si in the visible and ultraviolet spectral range. However, when strong quantum confinement effects come into play, carrier transport is significantly reduced due to strong exciton localization and Coulomb blockade effects, thus leading to limited photocurrent
    corecore