1,252 research outputs found

    Theory of a cavity around a large floating sphere in complex (dusty) plasma

    Get PDF
    In the last experiment with the PK-3 Plus laboratory onboard the International Space Station, interactions of millimeter-size metallic spheres with a complex plasma were studied~[M. Schwabe {\it et al.}, New J. Phys. {\bf 19}, 103019 (2017)]. Among the phenomena observed was the formation of cavities (regions free of microparticles forming a complex plasma) surrounding the spheres. The size of the cavity is governed by the balance of forces experienced by the microparticles at the cavity edge. In this article we develop a detailed theoretical model describing the cavity size and demonstrate that it agrees well with sizes measured experimentally. The model is based on a simple practical expression for the ion drag force, which is constructed to take into account simultaneously the effects of non-linear ion-particle coupling and ion-neutral collisions. The developed model can be useful for describing interactions between a massive body and surrounding complex plasma in a rather wide parameter regime.Comment: 9 pages, 4 figures; to be published (2019

    Measurement of the speed of sound by observation of the Mach cones in a complex plasma under microgravity conditions

    Get PDF
    We report the first observation of the Mach cones excited by a larger microparticle (projectile) moving through a cloud of smaller microparticles (dust) in a complex plasma with neon as a buffer gas under microgravity conditions. A collective motion of the dust particles occurs as propagation of the contact discontinuity. The corresponding speed of sound was measured by a special method of the Mach cone visualization. The measurement results are incompatible with the theory of ion acoustic waves. The estimate for the pressure in a strongly coupled Coulomb system and a scaling law for the complex plasma make it possible to derive an evaluation for the speed of sound, which is in a reasonable agreement with the experiments in complex plasmas.Comment: 5 pages, 2 figures, 1 tabl

    A search for J^{PC}=1^{-+} exotic mesons in the pi- pi- pi+ and pi- pi0 pi0 systems

    Full text link
    A partial wave analysis (PWA) of the pi-pi-pi+ and pi-pi0pi0 systems produced in the reaction pi- p -> (3pi)-p at 18 GeV/c was carried out using an isobar model assumption. This analysis is based on 3.0M pi-pi0pi0 events and 2.6M pi-pi-pi+ events and shows production of the a2(1320), pi2(1670) and \pi(1800) mesons. An earlier analysis of 250K pi-pi-pi+ events from the same experiment showed possible evidence for a J^{PC}=1^{-+}$ exotic meson with a mass of 1.6 GeV/c^2 decaying into rho pi. In this analysis of a higher statistics sample of the (3pi)- system in two charged modes we find no evidence of an exotic meson.Comment: 4 pages, 5 figures, added comment about the negative reflectivity exotic wave

    Measurement of xF3xF_3 and F2F_2 Structure Functions in Low Q2Q^2 Region with the IHEP-JINR Neutrino Detector

    Full text link
    The isoscalar structure functions xF3xF_3 and F2F_2 are measured as functions of xx averaged over all Q2Q^2 permissible for the range of 6 to 28 GeV of incident neutrino (anti-neutrino) energy at the IHEP-JINR Neutrino Detector. The QCD analysis of xF3xF_3 structure function provides ΛMSˉ(4)=(411±200)\Lambda_{\bar{MS}}^{(4)} = (411 \pm 200) MeV under the assumption of QCD validity in the region of low Q2Q^2. The corresponding value of the strong interaction constant αS(MZ)=0.1230.013+0.010\alpha_S (M_Z) = 0.123^{+0.010}_{-0.013} agrees with the recent result of the CCFR collaboration and with the combined LEP/SLC result.Comment: 11 pages, 1 Postscript figure, LaTeX. Talk given at the 7th International Workshop on Deep Inelastic Scattering and QCD (DIS 99), Zeuthen, Germany, 19-23 Apr 199

    Freezing and melting of 3D complex plasma structures under microgravity conditions driven by neutral gas pressure manipulation

    Full text link
    Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. Evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify main factors responsible for the observed behavior.Comment: Phys. Rev. Lett. (in press); 4 pages, 4 figure

    Fluid-solid phase transitions in 3D complex plasmas under microgravity conditions

    Full text link
    Phase behavior of large three-dimensional complex plasma systems under microgravity conditions onboard the International Space Station is investigated. The neutral gas pressure is used as a control parameter to trigger phase changes. Detailed analysis of structural properties and evaluation of three different melting/freezing indicators reveal that complex plasmas can exhibit melting by increasing the gas pressure. Theoretical estimates of complex plasma parameters allow us to identify main factors responsible for the observed behavior. The location of phase states of the investigated systems on a relevant equilibrium phase diagram is estimated. Important differences between the melting process of 3D complex plasmas under microgravity conditions and that of flat 2D complex plasma crystals in ground based experiments are discussed.Comment: 13 pages, 10 figures; submitted to Phys. Rev.

    Dynamics of lane formation in driven binary complex plasmas

    Full text link
    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.Comment: 4 pages, 3 figures, movies available at http://www.mpe.mpg.de/pke/lane-formation

    Structure and Phase transitions of Yukawa balls

    Full text link
    In this review, an overview of structural properties and phase transitions in finite spherical dusty (complex) plasma crystals -- so-called Yukawa balls -- is given. These novel kinds of Wigner crystals can be directly analyzed experimentally with video cameras. The experiments clearly reveal a shell structure and allow to determine the shell populations, to observe metastable states and transitions between configurations as well as phase transitions. The experimental observations of the static properties are well explained by a rather simple theoretical model which treats the dust particles as being confined by a parabolic potential and interacting via an isotropic Yukawa pair potential. The excitation properties of the Yukawa balls such as normal modes and the dynamic behavior, including the time-dependent formation of the crystal requires, in addition, to include the effect of friction between the dust particles and the neutral gas. Aside from first-principle molecular dynamics and Monte Carlo simulations several analytical approaches are reviewed which include shell models and a continuum theory. A summary of recent results and theory-experiment comparisons is given and questions for future research activities are outlined.Comment: Invited review, submitted to Contrib. Plasmas Physic
    corecore