2,415 research outputs found
Week 52 Influenza Forecast for the 2012-2013 U.S. Season
This document is another installment in a series of near real-time weekly
influenza forecasts made during the 2012-2013 influenza season. Here we present
some of the results of forecasts initiated following assimilation of
observations for Week 52 (i.e. the forecast begins December 30, 2012) for
municipalities in the United States. The forecasts were made on January 4,
2013. Results from forecasts initiated the five previous weeks (Weeks 47-51)
are also presented
Generation interval contraction and epidemic data analysis
The generation interval is the time between the infection time of an infected
person and the infection time of his or her infector. Probability density
functions for generation intervals have been an important input for epidemic
models and epidemic data analysis. In this paper, we specify a general
stochastic SIR epidemic model and prove that the mean generation interval
decreases when susceptible persons are at risk of infectious contact from
multiple sources. The intuition behind this is that when a susceptible person
has multiple potential infectors, there is a ``race'' to infect him or her in
which only the first infectious contact leads to infection. In an epidemic, the
mean generation interval contracts as the prevalence of infection increases. We
call this global competition among potential infectors. When there is rapid
transmission within clusters of contacts, generation interval contraction can
be caused by a high local prevalence of infection even when the global
prevalence is low. We call this local competition among potential infectors.
Using simulations, we illustrate both types of competition.
Finally, we show that hazards of infectious contact can be used instead of
generation intervals to estimate the time course of the effective reproductive
number in an epidemic. This approach leads naturally to partial likelihoods for
epidemic data that are very similar to those that arise in survival analysis,
opening a promising avenue of methodological research in infectious disease
epidemiology.Comment: 20 pages, 5 figures; to appear in Mathematical Bioscience
Techniques for Providing Outstanding Customer Service
Providing exceptional customer service should be one of the primary goals for all academic libraries. However, with the day- to- day interruptions, librarians sometimes forget all about customer service. By developing a Customer Service Task Force, Penfield Library has been able to develop a number of projects in the past two years to greatly improve its reputation. Such methods as surveys and small and large focus groups were conducted to determine what projects needed to be addressed. Tips and tricks to providing quality customer service in a small college/university library are also presented
Ethical Alternatives to Experiments with Novel Potential Pandemic Pathogens
Please see later in the article for the Editors' Summar
A Modified Janus Cassette (Sweet Janus) to Improve Allelic Replacement Efficiency by High-Stringency Negative Selection in Streptococcus pneumoniae
The Janus cassette permits marker-free allelic replacement or knockout in streptomycin-resistant Streptococcus pneumoniae (pneumococcus) through sequential positive and negative selection. Spontaneous revertants of Janus can lead to high level of false-positives during negative selection, which necessitate a time-consuming post-selection screening process. We hypothesized that an additional counter-selectable marker in Janus would decrease the revertant frequency and reduce false-positives, since simultaneous reversion of both counter-selectable makers is much less likely. Here we report a modified cassette, Sweet Janus (SJ), in which the sacB gene from Bacillus subtilis conferring sucrose sensitivity is added to Janus. By using streptomycin and sucrose simultaneously as selective agents, the frequency of SJ double revertants was about 105-fold lower than the frequency of Janus revertants. Accordingly, the frequency of false-positives in the SJ-mediated negative selection was about 100-fold lower than what was seen for Janus. Thus, SJ enhances negative selection stringency and can accelerate allelic replacement in pneumococcus, especially when transformation frequency is low due to strain background or suboptimal transformation conditions. Results also suggested the sacB gene alone can function as a counter-selectable marker in the Gram-positive pneumococcus, which will have the advantage of not requiring a streptomycin-resistant strain for allelic replacement
- …
