69 research outputs found
Glycopyrrolate/formoterol fumarate metered dose inhaler for maintenance-naïve patients with chronic obstructive pulmonary disease:a post-hoc analysis of the randomized PINNACLE trials
Background: Glycopyrrolate (GP)/formoterol fumarate (FF; GFF) metered dose inhaler is a fixed-dose combination dual bronchodilator for patients with chronic obstructive pulmonary disease (COPD); however, whether the efficacy in patients without current maintenance treatment is consistent with currently maintenance-treated patients is unclear.Methods: Data from patients who were not maintenance-treated at screening (NMT) (n = 1943) and patients who were maintenance-treated at screening (MT) patients (n = 3040) receiving GFF, FF, GP, or placebo were pooled from the Phase III PINNACLE studies (NCT01854645, NCT01854658, NCT02343458) for post-hoc analysis. MT patients had received long-acting bronchodilators and/or inhaled corticosteroids in the 30 days prior to screening, and/or prior to randomization. NMT patients had received short-acting bronchodilators or no treatment. Outcomes included forced expiratory volume over 1 s (FEV1), clinically important deterioration (CID), rescue medication use, and safety.Results: GFF provided significant lung function improvements at Week 24 versus placebo, GP, and FF for NMT patients, with pre-dose trough FEV1 treatment differences of 152 (117-188) mL, 73 (45-100) mL, and 56 (29-84) mL, respectively (least squares mean change from baseline versus comparators [95% CI]; all P < 0.0001). GFF reduced the risk of CID by 17-43% in NMT (P ≤ 0.0157) and 18-52% (P ≤ 0.0012) in MT patients compared with monotherapy and placebo, and reduced rescue medication use by 1.5 puffs/day over 24 weeks for both cohorts. Safety profiles for all cohorts were consistent with each other and the parent studies.Conclusions: NMT patients achieved better lung function with GFF versus monotherapy and placebo, without increased safety risk. Dual bronchodilator therapy may offer better outcomes than monotherapy for COPD patients when administered as first-line treatment.</p
Quantifying the real life risk profile of inhaled corticosteroids in COPD by record linkage analysis
BACKGROUND: Inhaled corticosteroids (ICS), especially when prescribed in combination with long-acting β(2) agonists have been shown to improve COPD outcomes. Although there is consistent evidence linking ICS with adverse effects such as pneumonia, the complete risk profile is unclear with conflicting evidence on any association between ICS and the incidence or worsening of existing diabetes, cataracts and fractures. We investigated this using record linkage in a Dundee COPD population. METHODS: A record linkage study linking COPD and diabetes datasets with prescription, hospitalisation and mortality data via a unique Community Health Index (CHI) number. A Cox regression model was used to determine the association between ICS use and new diabetes or worsening of existing diabetes and hospitalisations for pneumonia, fractures or cataracts after adjusting for potential confounders. A time dependent analysis of exposure comparing time on versus off ICS was used to take into account patients changing their exposure status during follow-up and to prevent immortal time bias. RESULTS: 4305 subjects (3243 exposed to ICS, total of 17,229 person-years of exposure and 1062 non exposed, with a follow-up of 4,508 patient-years) were eligible for the study. There were 239 cases of new diabetes (DM) and 265 cases of worsening DM, 550 admissions for pneumonia, 288 hospitalisations for fracture and 505 cataract related admissions. The hazard ratio for the association between cumulative ICS and outcomes were 0.70 (0.43-1.12), 0.57 (0.24-1.37), 1.38 (1.09-1.74), 1.08 (0.73-1.59) and 1.42 (1.07-1.88) after multivariate analysis respectively. CONCLUSION: The use of ICS in our cohort was not associated with new onset of diabetes, worsening of existing diabetes or fracture hospitalisation. There was however an association with increased cataracts and pneumonia hospitalisations
Benefits of glycopyrrolate/formoterol fumarate metered dose inhaler (GFF MDI) in improving lung function and reducing exacerbations in patients with moderate-to-very severe COPD:a pooled analysis of the PINNACLE studies
Background: The Phase III PINNACLE studies assessed the efficacy and safety of glycopyrrolate/formoterol fumarate metered dose inhaler (GFF MDI), a dual long-acting bronchodilator for chronic obstructive pulmonary disease (COPD). Here we present a pre-specified pooled analysis of PINNACLE-1, PINNACLE-2, and PINNACLE-4.Methods: PINNACLE-1, -2, and -4 were multicenter, double-blind, randomized controlled trials that enrolled patients with moderate-to-very severe COPD, with no requirement for exacerbation history or a high symptom burden. Patients received GFF MDI 18/9.6 μg, glycopyrrolate (GP) MDI 18 μg, formoterol fumarate (FF) MDI 9.6 μg, or placebo MDI, twice-daily for 24 weeks. The primary endpoint of the pooled analysis was the change from baseline in morning pre-dose trough forced expiratory volume in 1 s (FEV1) at week 24. Secondary endpoints included COPD exacerbations and clinically important deterioration (CID). Adverse events were also assessed.Results: The pooled intent-to-treat population included 4983 patients; of these, 61.9% had a COPD assessment test (CAT) score ≥15, and 25.0% had experienced ≥1 moderate/severe exacerbation in the past year. At week 24, GFF MDI improved morning pre-dose trough FEV1 versus GP MDI (least squares mean [LSM] difference [95% confidence interval (CI)]: 59 mL [43, 75]), FF MDI (65 mL [48, 81]), and placebo MDI (146 mL [125, 166]); all p < 0.0001. GFF MDI reduced the risk of a moderate/severe exacerbation by 18% (p = 0.0168), 15% (p = 0.0628), and 28% (p = 0.0012) compared with GP MDI, FF MDI, and placebo MDI, respectively. In general, exacerbation risk reduction with GFF MDI versus comparators was greater in subgroups of symptomatic patients (CAT ≥15) and those who had an exacerbation history, than in the pooled intent-to-treat population. The risk of CID was also lower with GFF MDI versus GP MDI (23% decrease), FF MDI (17%), and placebo MDI (49%); all p < 0.0001. All treatments were well tolerated, with no unexpected safety signals.Conclusions: This pooled analysis of the PINNACLE studies demonstrated that GFF MDI improved lung function and reduced the risk of exacerbations compared with monocomponents and placebo in patients with COPD. Exacerbation reductions with GFF MDI versus comparators were generally greater in patients with higher symptom burden and those with exacerbation history.Trial registration: ClinicalTrials.gov NCT01854645, NCT01854658, and NCT02343458. Registered 13 May 2013 (NCT01854645, NCT01854658) and 6 January 2015 (NCT02343458).</p
Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK
Background: Studies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use. Methods: We analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma. Findings: 75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI 1·05–1·37]; p=0·0080; patients aged ≥50 years: adjusted OR 1·17 [1·08–1·27]; p<0·0001), and patients aged 50 years and older with chronic pulmonary disease (with or without asthma) were significantly less likely than those without a respiratory condition to receive critical care (adjusted OR 0·66 [0·60–0·72] for those without asthma and 0·74 [0·62–0·87] for those with asthma; p<0·0001 for both). In patients aged 16–49 years, only those with severe asthma had a significant increase in mortality compared to those with no asthma (adjusted hazard ratio [HR] 1·17 [95% CI 0·73–1·86] for those on no asthma therapy, 0·99 [0·61–1·58] for those on SABAs only, 0·94 [0·62–1·43] for those on inhaled corticosteroids only, 1·02 [0·67–1·54] for those on inhaled corticosteroids plus LABAs, and 1·96 [1·25–3·08] for those with severe asthma). Among patients aged 50 years and older, those with chronic pulmonary disease had a significantly increased mortality risk, regardless of inhaled corticosteroid use, compared to patients without an underlying respiratory condition (adjusted HR 1·16 [95% CI 1·12–1·22] for those not on inhaled corticosteroids, and 1·10 [1·04–1·16] for those on inhaled corticosteroids; p<0·0001). Patients aged 50 years and older with severe asthma also had an increased mortality risk compared to those not on asthma therapy (adjusted HR 1·24 [95% CI 1·04–1·49]). In patients aged 50 years and older, inhaled corticosteroid use within 2 weeks of hospital admission was associated with decreased mortality in those with asthma, compared to those without an underlying respiratory condition (adjusted HR 0·86 [95% CI 0·80−0·92]). Interpretation: Underlying respiratory conditions are common in patients admitted to hospital with COVID-19. Regardless of the severity of symptoms at admission and comorbidities, patients with asthma were more likely, and those with chronic pulmonary disease less likely, to receive critical care than patients without an underlying respiratory condition. In patients aged 16 years and older, severe asthma was associated with increased mortality compared to non-severe asthma. In patients aged 50 years and older, inhaled corticosteroid use in those with asthma was associated with lower mortality than in patients without an underlying respiratory condition; patients with chronic pulmonary disease had significantly increased mortality compared to those with no underlying respiratory condition, regardless of inhaled corticosteroid use. Our results suggest that the use of inhaled corticosteroids, within 2 weeks of admission, improves survival for patients aged 50 years and older with asthma, but not for those with chronic pulmonary disease. Funding: National Institute for Health Research, Medical Research Council, NIHR Health Protection Research Units in Emerging and Zoonotic Infections at the University of Liverpool and in Respiratory Infections at Imperial College London in partnership with Public Health England
Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19:a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK
Background Studies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use. Methods We analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma. Findings 75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI 1·05–1·37]; p=0·0080; patients aged ≥50 years: adjusted OR 1·17 [1·08–1·27]; p<0·0001), and patients aged 50 years and older with chronic pulmonary disease (with or without asthma) were significantly less likely than those without a respiratory condition to receive critical care (adjusted OR 0·66 [0·60–0·72] for those without asthma and 0·74 [0·62–0·87] for those with asthma; p<0·0001 for both). In patients aged 16–49 years, only those with severe asthma had a significant increase in mortality compared to those with no asthma (adjusted hazard ratio [HR] 1·17 [95% CI 0·73–1·86] for those on no asthma therapy, 0·99 [0·61–1·58] for those on SABAs only, 0·94 [0·62–1·43] for those on inhaled corticosteroids only, 1·02 [0·67–1·54] for those on inhaled corticosteroids plus LABAs, and 1·96 [1·25–3·08] for those with severe asthma). Among patients aged 50 years and older, those with chronic pulmonary disease had a significantly increased mortality risk, regardless of inhaled corticosteroid use, compared to patients without an underlying respiratory condition (adjusted HR 1·16 [95% CI 1·12–1·22] for those not on inhaled corticosteroids, and 1·10 [1·04–1·16] for those on inhaled corticosteroids; p<0·0001). Patients aged 50 years and older with severe asthma also had an increased mortality risk compared to those not on asthma therapy (adjusted HR 1·24 [95% CI 1·04–1·49]). In patients aged 50 years and older, inhaled corticosteroid use within 2 weeks of hospital admission was associated with decreased mortality in those with asthma, compared to those without an underlying respiratory condition (adjusted HR 0·86 [95% CI 0·80−0·92]). Interpretation Underlying respiratory conditions are common in patients admitted to hospital with COVID-19. Regardless of the severity of symptoms at admission and comorbidities, patients with asthma were more likely, and those with chronic pulmonary disease less likely, to receive critical care than patients without an underlying respiratory condition. In patients aged 16 years and older, severe asthma was associated with increased mortality compared to non-severe asthma. In patients aged 50 years and older, inhaled corticosteroid use in those with asthma was associated with lower mortality than in patients without an underlying respiratory condition; patients with chronic pulmonary disease had significantly increased mortality compared to those with no underlying respiratory condition, regardless of inhaled corticosteroid use. Our results suggest that the use of inhaled corticosteroids, within 2 weeks of admission, improves survival for patients aged 50 years and older with asthma, but not for those with chronic pulmonary disease
Recommended from our members
Secretome of mesenchymal stem cells and its impact on Chronic Obstructive Pulmonary Disease
Chronic obstructive pulmonary disease (COPD) is characterized by irreversible loss of lung function that stem from two mechanisms, inflammation and senescence. Crosstalk between these two mechanisms accelerate the development of COPD, thus targeting these two pathways may offer benefits in the treatment of COPD. Growing amount of evidence have shown that mesenchymal stem cells as a promising candidate for the treatment of COPD. Over the years, many studies conducted to decipher the therapeutic effect of MSC in COPD and the mechanisms involve, in the hope of utilizing these cells as new therapeutic strategy for COPD. However, the cell-based therapy by using the MSC presented with many obstacles including low engraftment at the site of injury, the risk of microvascular occlusion, unwanted differentiation, and also the risk of malignant transformation. Recently, recently researchers begin to look at the possibility of using MSC derived extracellular vesicles as an alternative to MSC. Here we review the effect of MSC and MSC derived EV in modulating inflammation, and senescence in COPD. We also review current treatment and the side effect in COPD, and senolytic drugs, a new therapeutic strategy targeting the senescent cells
Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.
BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca
- …
