1,100 research outputs found

    New theoretical method for calculating the radiative association cross section of a triatomic molecule: Application to N2-H-

    Full text link
    We present a new theoretical method to treat the atom diatom radiative association within a time independent approach. This method is an adaptation of the driven equations method developed for photodissociation. The bound states energies and wave functions of the molecule are calculated exactly and used to propagate the overlap with the initial scattering wave function. In the second part of this paper, this approach is applied to the radiative association of the N2H- anion. The main features of the radiative association cross sections are analysed and the magnitude of the calculated rate coefficient at 10 Kelvin is used to discuss the existence of the N2H- in the interstellar medium which could be used as a tracer of both N2 and H-

    Formation of interstellar SH+^+ from vibrationally excited H2_2: Quantum study of S+^+ + H2_2 \rightleftarrows SH+^+ + H reactions and inelastic collisions

    Full text link
    The rate constants for the formation, destruction, and collisional excitation of SH+^+ are calculated from quantum mechanical approaches using two new SH2+_2^+ potential energy surfaces (PESs) of 4A^4A'' and 2A^2A'' electronic symmetry. The PESs were developed to describe all adiabatic states correlating to the SH+^+ (3Σ^3\Sigma^-) + H(2S^2S) channel. The formation of SH+^+ through the S+^+ + H2_2 reaction is endothermic by \approx 9860 K, and requires at least two vibrational quanta on the H2_2 molecule to yield significant reactivity. Quasi-classical calculations of the total formation rate constant for H2_2(v=2v=2) are in very good agreement with the quantum results above 100K. Further quasi-classical calculations are then performed for v=3v=3, 4, and 5 to cover all vibrationally excited H2_2 levels significantly populated in dense photodissociation regions (PDR). The new calculated formation and destruction rate constants are two to six times larger than the previous ones and have been introduced in the Meudon PDR code to simulate the physical and illuminating conditions in the Orion bar prototypical PDR. New astrochemical models based on the new molecular data produce four times larger SH+^+ column densities, in agreement with those inferred from recent ALMA observations of the Orion bar.Comment: 8 pages, 7 figure

    Collisional excitation of HC3N by para- and ortho-H2

    Full text link
    New calculations for rotational excitation of cyanoacetylene by collisions with hydrogen molecules are performed to include the lowest 38 rotational levels of HC3N and kinetic temperatures to 300 K. Calculations are based on the interaction potential of Wernli et al. A&A, 464, 1147 (2007) whose accuracy is checked against spectroscopic measurements of the HC3N-H2 complex. The quantum coupled-channel approach is employed and complemented by quasi-classical trajectory calculations. Rate coefficients for ortho-H2 are provided for the first time. Hyperfine resolved rate coefficients are also deduced. Collisional propensity rules are discussed and comparisons between quantum and classical rate coefficients are presented. This collisional data should prove useful in interpreting HC3N observations in the cold and warm ISM, as well as in protoplanetary disks.Comment: 8 pages, 2 tables, 4 figures, accepted for publication in MNRA

    The rotational excitation of HCN and HNC by He: New insights on the HCN/HNC abundance ratio in molecular clouds

    Full text link
    Modeling of molecular emission from interstellar clouds requires the calculation of rates for excitation by collisions with the most abundant species. The present paper focuses on the calculation of rate coefficients for rotational excitation of the HCN and HNC molecules in their ground vibrational state in collision with He. The calculations are based on new two-dimensional potential energy surfaces obtained from highly correlated \textit{ab initio} calculations. Calculations of pure rotational (de)excitation cross sections of HCN and HNC by He were performed using the essentially exact close-coupling method. Cross sections for transitions among the 8 first rotational levels of HCN and HNC were calculated for kinetic energies up to 1000 cm1^{-1}. These cross sections were used to determine collisional rate constants for temperatures ranging from 5 K to 100 K. A propensity for even Δj\Delta j transitions is observed in the case of HCN--He collisions whereas a propensity for odd Δj\Delta j transitions is observed in the case of HNC--He collisions. The consequences for astrophysical models are evaluated and it is shown that the use of HCN rate coefficients to interpret HNC observations can lead to significant inaccuracies in the determination of the HNC abundance, in particular in cold dark clouds for which the new HNC rates show that the j=10j=1-0 line of this species will be more easily excited by collisions than HCN. An important result of the new HNC-He rates is that the HNC/HCN abundance ratio derived from observations in cold clouds has to be revised from >>1 to \simeq1, in good agreement with detailed chemical models available in the literature.Comment: 8 figue

    Collisional excitation of water by hydrogen atoms

    Full text link
    We present quantum dynamical calculations that describe the rotational excitation of H2_2O due to collisions with H atoms. We used a recent, high accuracy potential energy surface, and solved the collisional dynamics with the close-coupling formalism, for total energies up to 12 000 cm1^{-1}. From these calculations, we obtained collisional rate coefficients for the first 45 energy levels of both ortho- and para-H2_2O and for temperatures in the range T = 5-1500 K. These rate coefficients are subsequently compared to the values previously published for the H2_2O / He and H2_2O / H2_2 collisional systems. It is shown that no simple relation exists between the three systems and that specific calculations are thus mandatory

    Refit to numerically problematic UMIST reaction rate coefficients

    Full text link
    Aims. Chemical databases such as the UMIST Database for Astrochemistry (UDFA) are indispensable in the numerical modeling of astrochemical networks. Several of the listed reactions in the UDFA have properties that are problematic in numerical computations: Some are parametrized in a way that leads to extremely divergent behavior for low kinetic temperatures. Other reactions possess multiple entries that are each valid in a different temperature regime, but have no smooth transition when switching from one to another. Numerically, this introduces many difficulties.We present corrected parametrizations for these sets of reactions in the UDFA06 database. Methods. From the tabulated parametrization in UDFA, we created artificial data points and used a Levenberg-Marquardt algorithm to find a set of improved fit parameters without divergent behavior for low temperatures. For reactions with multiple entries in the database that each possess a different temperature regime, we present one joint parametrization that is designed to be valid over the whole cumulative temperature range of all individual reactions. Results. We show that it is possible to parametrize numerically problematic reactions from UDFA in a form that avoids low temperature divergence. Additionally, we demonstrate that it is possible to give a collective parametrization for reaction rate coefficients of reactions with multiple entries in UDFA. We present these new fitted values in tabulated form.Comment: accepted by A&

    Collisional excitation of CH(X-2 Pi) by He: new ab initio potential energy surfaces and scattering calculations

    Get PDF
    S.M. and F.L. greatly acknowledge the financial support of ANR project ‘HYDRIDES’. This research utilized Queen Mary's MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. J.K. acknowledges the financial support by the National Science Foundation Grant No. CHE-121333

    Nitrogen isotopic ratios in Barnard 1: a consistent study of the N2H+, NH3, CN, HCN and HNC isotopologues

    Full text link
    The 15N isotopologue abundance ratio measured today in different bodies of the solar system is thought to be connected to 15N-fractionation effects that would have occured in the protosolar nebula. The present study aims at putting constraints on the degree of 15N-fractionation that occurs during the prestellar phase, through observations of D, 13C and 15N-substituted isotopologues towards B1b. Both molecules from the nitrogen hydride family, i.e. N2H+ and NH3, and from the nitrile family, i.e. HCN, HNC and CN, are considered in the analysis. As a first step, we model the continuum emission in order to derive the physical structure of the cloud, i.e. gas temperature and H2 density. These parameters are subsequently used as an input in a non-local radiative transfer model to infer the radial abundances profiles of the various molecules. Our modeling shows that all the molecules are affected by depletion onto dust grains, in the region that encompasses the B1-bS and B1-bN cores. While high levels of deuterium fractionation are derived, we conclude that no fractionation occurs in the case of the nitrogen chemistry. Independently of the chemical family, the molecular abundances are consistent with 14N/15N~300, a value representative of the elemental atomic abundances of the parental gas. The inefficiency of the 15N-fractionation effects in the B1b region can be linked to the relatively high gas temperature ~17K which is representative of the innermost part of the cloud. Since this region shows signs of depletion onto dust grains, we can not exclude the possibility that the molecules were previously enriched in 15N, earlier in the B1b history, and that such an enrichment could have been incorporated into the ice mantles. It is thus necessary to repeat this kind of study in colder sources to test such a possibility.Comment: accepted in A&

    Modeling the Arctic Freshwater System and its integration in the global system: Lessons learned and future challenges

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Numerous components of the Arctic freshwater system (atmosphere, ocean, cryosphere, and terrestrial hydrology) have experienced large changes over the past few decades, and these changes are projected to amplify further in the future. Observations are particularly sparse, in both time and space, in the polar regions. Hence, modeling systems have been widely used and are a powerful tool to gain understanding on the functioning of the Arctic freshwater system and its integration within the global Earth system and climate. Here we present a review of modeling studies addressing some aspect of the Arctic freshwater system. Through illustrative examples, we point out the value of using a hierarchy of models with increasing complexity and component interactions, in order to dismantle the important processes at play for the variability and changes of the different components of the Arctic freshwater system and the interplay between them. We discuss past and projected changes for the Arctic freshwater system and explore the sources of uncertainty associated with these model results. We further elaborate on some missing processes that should be included in future generations of Earth system models and highlight the importance of better quantification and understanding of natural variability, among other factors, for improved predictions of Arctic freshwater system change.The first two authors have contributed equally to the publication. The Arctic Freshwater Synthesis has been sponsored by the World Climate Research Programme’s Climate and the Cryosphere project (WCRP-CliC), the International Arctic Science Committee (IASC), and the Arctic Monitoring and Assessment Programme (AMAP). C.L. acknowledges support from the UK Natural Environment Research Council. M.M.H. acknowledges support from NSF PLR-1417642. D.M.L. is supported by funding from the U.S. Department of Energy BER, as part of its Climate Change Prediction Program, Cooperative Agreement DE-FC03-97ER62402/A010, and NSF grants AGS-1048996, PLS-1048987, and PLS-1304220. J.A.S. is supported by Natural Environment Research Council grant NE/J019585/1. Y.D. is supported by Environment Canada’s Northern Hydrology program. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The CMIP data and CESM-LE data are available through the relevant Web data portal

    OH+ in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He

    Get PDF
    The rate constants required to model the OH+^+ observations in different regions of the interstellar medium have been determined using state of the art quantum methods. First, state-to-state rate constants for the H2(v=0,J=0,1)_2(v=0,J=0,1)+ O+^+(4S^4S) \rightarrow H + OH+(X3Σ,v,N)^+(X ^3\Sigma^-, v', N) reaction have been obtained using a quantum wave packet method. The calculations have been compared with time-independent results to asses the accuracy of reaction probabilities at collision energies of about 1 meV. The good agreement between the simulations and the existing experimental cross sections in the 0.010.01-1 eV energy range shows the quality of the results. The calculated state-to-state rate constants have been fitted to an analytical form. Second, the Einstein coefficients of OH+^+ have been obtained for all astronomically significant ro-vibrational bands involving the X3ΣX^3\Sigma^- and/or A3ΠA^3\Pi electronic states. For this purpose the potential energy curves and electric dipole transition moments for seven electronic states of OH+^+ are calculated with {\it ab initio} methods at the highest level and including spin-orbit terms, and the rovibrational levels have been calculated including the empirical spin-rotation and spin-spin terms. Third, the state-to-state rate constants for inelastic collisions between He and OH+(X3Σ)^+(X ^3\Sigma^-) have been calculated using a time-independent close coupling method on a new potential energy surface. All these rates have been implemented in detailed chemical and radiative transfer models. Applications of these models to various astronomical sources show that inelastic collisions dominate the excitation of the rotational levels of OH+^+. In the models considered the excitation resulting from the chemical formation of OH+^+ increases the line fluxes by about 10 % or less depending on the density of the gas
    corecore