243 research outputs found
Aging display's effect on interpretation of digital pathology slides
It is our conjecture that the variability of colors in a pathology image
effects the interpretation of pathology cases, whether it is diagnostic
accuracy, diagnostic confidence, or workflow efficiency. In this paper, digital
pathology images are analyzed to quantify the perceived difference in color
that occurs due to display aging, in particular a change in the maximum
luminance, white point, and color gamut. The digital pathology images studied
include diagnostically important features, such as the conspicuity of nuclei.
Three different display aging models are applied to images: aging of luminance
& chrominance, aging of chrominance only, and a stabilized luminance &
chrominance (i.e., no aging). These display models and images are then used to
compare conspicuity of nuclei using CIE deltaE2000, a perceptual color
difference metric. The effect of display aging using these display models and
images is further analyzed through a human reader study designed to quantify
the effects from a clinical perspective. Results from our reader study indicate
significant impact of aged displays on workflow as well as diagnosis as follow.
As compared to the originals (no-aging), slides with the effect of aging
simulated were significantly more difficult to read (p-value of 0.0005) and
took longer to score (p-value of 0.02). Moreover, luminance+chrominance aging
significantly reduced inter-session percent agreement of diagnostic scores
(p-value of 0.0418)
Hydrodynamic interaction in quasi-two-dimensional suspensions
Confinement between two parallel surfaces is found, theoretically and
experimentally, to drastically affect the hydrodynamic interaction between
colloid particles, changing the sign of the coupling, its decay with distance
and its concentration dependence. In particular, we show that three-body
effects do not modify the coupling at large distances as would be expected from
hydrodynamic screening.Comment: 8 pages, 2 figure
Mesoscopic modelling of financial markets
We derive a mesoscopic description of the behavior of a simple financial
market where the agents can create their own portfolio between two investment
alternatives: a stock and a bond. The model is derived starting from the
Levy-Levy-Solomon microscopic model (Econ. Lett., 45, (1994), 103--111) using
the methods of kinetic theory and consists of a linear Boltzmann equation for
the wealth distribution of the agents coupled with an equation for the price of
the stock. From this model, under a suitable scaling, we derive a Fokker-Planck
equation and show that the equation admits a self-similar lognormal behavior.
Several numerical examples are also reported to validate our analysis
Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface
We describe direct imaging measurements of the collective and relative
diffusion of two colloidal spheres near a flat plate. The bounding surface
modifies the spheres' dynamics, even at separations of tens of radii. This
behavior is captured by a stokeslet analysis of fluid flow driven by the
spheres' and wall's no-slip boundary conditions. In particular, this analysis
reveals surprising asymmetry in the normal modes for pair diffusion near a flat
surface.Comment: 4 pages, 4 figure
Active and driven hydrodynamic crystals
Motivated by the experimental ability to produce monodisperse particles in
microfluidic devices, we study theoretically the hydrodynamic stability of
driven and active crystals. We first recall the theoretical tools allowing to
quantify the dynamics of elongated particles in a confined fluid. In this
regime hydrodynamic interactions between particles arise from a superposition
of potential dipolar singularities. We exploit this feature to derive the
equations of motion for the particle positions and orientations. After showing
that all five planar Bravais lattices are stationary solutions of the equations
of motion, we consider separately the case where the particles are passively
driven by an external force, and the situation where they are self-propelling.
We first demonstrate that phonon modes propagate in driven crystals, which are
always marginally stable. The spatial structure of the eigenmodes depend solely
on the symmetries of the lattices, and on the orientation of the driving force.
For active crystals, the stability of the particle positions and orientations
depends not only on the symmetry of the crystals but also on the perturbation
wavelengths and on the crystal density. Unlike unconfined fluids, the stability
of active crystals is independent of the nature of the propulsion mechanism at
the single particle level. The square and rectangular lattices are found to be
linearly unstable at short wavelengths provided the volume fraction of the
crystals is high enough. Differently, hexagonal, oblique, and face-centered
crystals are always unstable. Our work provides a theoretical basis for future
experimental work on flowing microfluidic crystals.Comment: 10 pages, 10 figure
Propulsion in a viscoelastic fluid
Flagella beating in complex fluids are significantly influenced by
viscoelastic stresses. Relevant examples include the ciliary transport of
respiratory airway mucus and the motion of spermatozoa in the mucus-filled
female reproductive tract. We consider the simplest model of such propulsion
and transport in a complex fluid, a waving sheet of small amplitude free to
move in a polymeric fluid with a single relaxation time. We show that, compared
to self-propulsion in a Newtonian fluid occurring at a velocity U_N, the sheet
swims (or transports fluid) with velocity U / U_N = [1+De^2 (eta_s)/(eta)
]/[1+De^2], where eta_s is the viscosity of the Newtonian solvent, eta is the
zero-shear-rate viscosity of the polymeric fluid, and De is the Deborah number
for the wave motion, product of the wave frequency by the fluid relaxation
time. Similar expressions are derived for the rate of work of the sheet and the
mechanical efficiency of the motion. These results are shown to be independent
of the particular nonlinear constitutive equations chosen for the fluid, and
are valid for both waves of tangential and normal motion. The generalization to
more than one relaxation time is also provided. In stark contrast with the
Newtonian case, these calculations suggest that transport and locomotion in a
non-Newtonian fluid can be conveniently tuned without having to modify the
waving gait of the sheet but instead by passively modulating the material
properties of the liquid.Comment: 21 pages, 1 figur
The long-time dynamics of two hydrodynamically-coupled swimming cells
Swimming micro-organisms such as bacteria or spermatozoa are typically found
in dense suspensions, and exhibit collective modes of locomotion qualitatively
different from that displayed by isolated cells. In the dilute limit where
fluid-mediated interactions can be treated rigorously, the long-time
hydrodynamics of a collection of cells result from interactions with many other
cells, and as such typically eludes an analytical approach. Here we consider
the only case where such problem can be treated rigorously analytically, namely
when the cells have spatially confined trajectories, such as the spermatozoa of
some marine invertebrates. We consider two spherical cells swimming, when
isolated, with arbitrary circular trajectories, and derive the long-time
kinematics of their relative locomotion. We show that in the dilute limit where
the cells are much further away than their size, and the size of their circular
motion, a separation of time scale occurs between a fast (intrinsic) swimming
time, and a slow time where hydrodynamic interactions lead to change in the
relative position and orientation of the swimmers. We perform a multiple-scale
analysis and derive the effective dynamical system - of dimension two -
describing the long-time behavior of the pair of cells. We show that the system
displays one type of equilibrium, and two types of rotational equilibrium, all
of which are found to be unstable. A detailed mathematical analysis of the
dynamical systems further allows us to show that only two cell-cell behaviors
are possible in the limit of , either the cells are attracted to
each other (possibly monotonically), or they are repelled (possibly
monotonically as well), which we confirm with numerical computations
Screening by symmetry of long-range hydrodynamic interactions of polymers confined in sheets
Hydrodynamic forces may significantly affect the motion of polymers. In
sheet-like cavities, such as the cell's cytoplasm and microfluidic channels,
the hydrodynamic forces are long-range. It is therefore expected that that
hydrodynamic interactions will dominate the motion of polymers in sheets and
will be manifested by Zimm-like scaling. Quite the opposite, we note here that
although the hydrodynamic forces are long-range their overall effect on the
motion of polymers vanishes due to the symmetry of the two-dimensional flow. As
a result, the predicted scaling of experimental observables such as the
diffusion coefficient or the rotational diffusion time is Rouse-like, in accord
with recent experiments. The effective screening validates the use of the
non-interacting blobs picture for polymers confined in a sheet.Comment: http://www.weizmann.ac.il/complex/tlusty/papers/Macromolecules2006.pdf
http://pubs.acs.org/doi/abs/10.1021/ma060251
AIDS-Related EBV-Associated Smooth Muscle Tumors: A Review of 64 Published Cases
The number of reported cases of smooth muscle tumor (SMT) arising in patients with AIDS has been increasing since the mid-1990s. The aim of this study is to characterize the epidemiology, clinical manifestations, pathologic features, prognosis and, management of Epstein-Barr virus-related SMT (EBV-SMT) in patients with AIDS. An English language literature search identified 53 articles including 64 reported cases of EBV-SMT. The majority of these reports involved patients who were young, severely immunosuppressed, and had multifocal tumors. The central nervous system was the most common site to be involved. Histologically, tumors had smooth muscle features and were immunoreactive for muscle markers and all but two tumors demonstrated the presence of EBV by either immunohistochemistry, in situ hybridization, and/or PCR. While mitoses and/or necrosis were used to separate leiomyoma from leiomyosarcoma, these features did not correlate with clinical outcome. Treatment included primarily resection, and less often radiotherapy, chemotherapy and highly active antiretroviral therapy (HAART). Overall, EBV-SMTs appear to have variable aggressiveness and clinical outcome and may exhibit a more favorable prognosis compared to conventional leiomyosarcoma. Tumor-related death from EBV-SMT occurred in only 4 of 51 patients
- …
