119 research outputs found
HIV-1 Reverse Transcriptase Connection Domain Mutations: Dynamics of Emergence and Implications for Success of Combination Antiretroviral Therapy
Background. Factors promoting the emergence of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) connection domain mutations and their effect on antiretroviral therapy (ART) are still largely undetermined.We investigated this matter by analyzing genotypic resistance tests covering 400 amino acid positions in the RT of HIV-1 subtype B viruses and corresponding treatment histories and laboratory measurements. Methods. The emergence of connection domain mutations was studied in 334 patients receiving monotherapy or dual therapy with thymidine analogues at the time of the genotypic resistance test. Response to subsequent combination ART (cART) was analyzed using Cox regression for 291 patients receiving unboosted protease inhibitors. Response was defined by ever reaching an HIV RNA level <50 copies/mL during the first cART. Results. The connection domain mutations N348I, R356K, R358K, A360V, and A371V were more frequently observed in ART-exposed than ART-naive patients, of which only N348I and A360V were nonpolymorphic (with a prevalence of <1.5% in untreated patients). N348I correlated with M184V and predominantly occurred in patients receiving lamivudine and zidovudine concomitantly. A360V was not associated with specific drug combinations and was found to emerge later than M184V or thymidine analogue mutations. Nonpolymorphic connection domain mutations were rarely detected in the absence of established drug resistance mutations in ART-exposed individuals (prevalence, <1%). None of the 5 connection domain mutations associated with treatment showed a statistically significant effect on response to cART. Conclusions. Despite their frequent emergence, connection domain mutations did not show large detrimental effects on response to cART. Currently, routine implementation of connection domain sequencing seems unnecessary for developed health care setting
Epidemiological and Biological Evidence for a Compensatory Effect of Connection Domain Mutation N348I on M184V in HIV-1 Reverse Transcriptase
Background. The connection domain mutation N348I confers resistance to zidovudine (AZT) and is associated with the lamivudine (3TC) mutation M184V. We explored the biochemical and virological influence of N348I in the context of M184V. Methods. Genotypic resistance data for patients receiving monotherapy or dual therapy with AZT, lamivudine (3TC), or AZT/3TC were analyzed. Rates of N348I emergence were compared between treatment groups. Mutant reverse transcriptases (RTs) containing M184V and/or N348I were generated to study enzymatic and virological properties. Results. We included 50 AZT-treated, 11 3TC-treated, and 10 AZT/3TC-treated patients. N348I was observed in 3 (6%), 0, and 4 (40%) of these patients, respectively. The rate of N348I emergence was increased by 5-fold in the AZT/3TC group (11.7 instances [95% confidence interval {CI}, 3.2-30.1 instances] per 100 person-years of receipt of AZT), compared with the rate noted for the AZT group (2.3 instances [95% CI, 0.4-6.8 instances] per 100 person-years of receipt of AZT; P = .04). Biochemical data show that N348I can partially compensate for the diminution in processive DNA synthesis and the reduction in AZT excision associated with M184V. Furthermore, virological analyses demonstrate that N348I confers low-level resistance to AZT and partly restores the reduced RT activity of the M184V variant. Conclusion. In vivo selection of N348I is driven by AZT and is further facilitated when 3TC is coadministered. Compensatory interactions between N348I and M184V help to explain these finding
HIV-1 Viral loas assays for resource-limited settings
Tremendous strides have been made in treating HIV-1 infection in industrialized countries. Combination therapy with antiretroviral (ARV) drugs suppresses virus replication, delays disease progression, and reduces mortality. In industrialized settings, plasma viral load assays are used in combination with CD4 cell counts to determine when to initiate therapy and when a regimen is failing. In addition, unlike serologic assays, these assays may be used to diagnose perinatal or acute HIV-1 infection. Unfortunately, the full benefits of antiretroviral drugs and monitoring tests have not yet reached the majority of HIV-1-infected patients who live in countries with limited resources. In this article we discuss existing data on the performance of alternative viral load assays that might be useful in resource-limited settings
HIV-1 viral load assays for resource-limited settings: Authors' reply [5]
The authors discuss studies on the low-cost viral load assays that are currently available and their potential for use in resource-limited settings
vFitness: a web-based computing tool for improving estimation of in vitro HIV-1 fitness experiments
<p>Abstract</p> <p>Background</p> <p>The replication rate (or fitness) between viral variants has been investigated <it>in vivo </it>and <it>in vitro </it>for human immunodeficiency virus (HIV). HIV fitness plays an important role in the development and persistence of drug resistance. The accurate estimation of viral fitness relies on complicated computations based on statistical methods. This calls for tools that are easy to access and intuitive to use for various experiments of viral fitness.</p> <p>Results</p> <p>Based on a mathematical model and several statistical methods (least-squares approach and measurement error models), a Web-based computing tool has been developed for improving estimation of virus fitness in growth competition assays of human immunodeficiency virus type 1 (HIV-1).</p> <p>Conclusions</p> <p>Unlike the two-point calculation used in previous studies, the estimation here uses linear regression methods with all observed data in the competition experiment to more accurately estimate relative viral fitness parameters. The dilution factor is introduced for making the computational tool more flexible to accommodate various experimental conditions. This Web-based tool is implemented in C# language with Microsoft ASP.NET, and is publicly available on the Web at <url>http://bis.urmc.rochester.edu/vFitness/</url>.</p
Tumor Evolution in Two Patients with Basal-like Breast Cancer: A Retrospective Genomics Study of Multiple Metastases
Metastasis is the main cause of cancer patient deaths and remains a poorly characterized process. It is still unclear when in tumor progression the ability to metastasize arises and whether this ability is inherent to the primary tumor or is acquired well after primary tumor formation. Next-generation sequencing and analytical methods to define clonal heterogeneity provide a means for identifying genetic events and the temporal relationships between these events in the primary and metastatic tumors within an individual
No Evidence for Decay of the Latent Reservoir in HIV‐1–Infected Patients Receiving Intensive Enfuvirtide‐Containing Antiretroviral Therapy
Human immunodeficiency virus type 1 (HIV-1) persists in a latent reservoir of infected resting memory CD4 cells in patients receiving antiretroviral therapy. We assessed whether multitarget therapy with enfuvirtide, 2 reverse-transcriptase inhibitors, and a ritonavir-boosted protease inhibitor leads to decay of this reservoir. Nineteen treatment-naive patients initiated this regimen; 9 experienced virologic suppression and continued enfuvirtide-containing therapy for at least 48 weeks. In enfuvirtide-treated patients with virological suppression, there was no decay of the latent reservoir (95% confidence interval for half-life, 11 months to infinity). The stability of the latent reservoir despite intensive therapy suggests that new strategies are needed to eradicate HIV-1 from this reservoir
Polatuzumab vedotin plus bendamustine and rituximab or obinutuzumab in relapsed/refractory follicular lymphoma: a phase Ib/II study
Follicular lymphoma (FL) is the most common type of indolent non-Hodgkin lymphoma. Despite treatment advances that have improved outcomes for patients with relapsed or refractory (R/R) FL, many patients still die from progressive disease or treatment-related toxicities. In the phase Ib/II GO29365 study (clinicaltrials.gov 02257567), the safety and efficacy of polatuzumab vedotin plus bendamustine and rituximab (Pola-BR) versus bendamustine and rituximab (BR) alone, and polatuzumab vedotin plus bendamustine and obinutuzumab (Pola-BG) as a single-arm cohort were evaluated in patients with R/R FL. Following the phase Ib safety run-in, patients were randomized 1:1 to receive Pola-BR or BR alone in the phase II stage; a separate non-randomized Pola-BG cohort was examined in the phase Ib/II expansion stage. Primary endpoints included safety and tolerability (phase Ib) and positron emission tomography complete response (PET-CR) rate by independent review committee (phase II). Overall, 112 patients were enrolled (phase Ib safety run-in: Pola-BR, N=6; phase II randomized cohort: Pola-BR, N=39; BR, N=41; phase Ib/II expansion cohort: Pola-BG, N=26). PET-CR rates were 66.7% (phase Ib safety run-in, Pola-BR); 69.2% (phase II randomized, Pola-BR); 63.4% (phase II randomized, BR); and 65.4% (phase Ib/II expansion Pola-BG). There was a higher occurrence of cytopenias with Pola-BR and Pola-BG than with BR; serious adverse events were more frequent with Pola-BR (61.4%) and Pola-BG (46.2%) than with BR (29.3%). Overall, this analysis does not demonstrate a benefit of adding Pola to BR or BG regimens for patients with R/R FL
A safe, effective and adaptable live-attenuated SARS-CoV-2 vaccine to reduce disease and transmission using one-to-stop genome modifications.
Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses
- …
