460 research outputs found

    Focusing nucleic acid-based molecular diagnostics and xenomonitoring approaches for human helminthiases amenable to preventive chemotherapy

    Get PDF
    The current mainstay for control of the four major helminth diseases in humans (lymphatic filariasis, onchocerciasis, soil-transmitted helminthiases and schistosomiasis) is with preventive chemotherapy by mass administration of key anthelminthics. Following the London Declaration on Neglected Tropical Diseases in 2012, a roadmap for the elimination and control of these helminthiases by 2020 has been devised. With expected declines in prevalence and intensity of these infections, there is urgent need for implementing more sensitive, high-throughput and cost-effective diagnostic tools. Currently available diagnostic approaches for surveying, monitoring and evaluating helminth control programmes are based on microscopical observation of eggs/larvae, and/or detection of antibodies or parasite antigens in stool, urine or blood; all relatively low-throughput and of limited sensitivity and specificity. Newly proposed approaches for helminthiases diagnosis include the nucleic acid-based methods of (multiplex) real-time polymerase chain reaction assays, loop-mediated isothermal amplification and recombinase polymerase amplification. However, as well as sensitivity/specificity evaluation, their comparison to current ‘gold standard’ diagnostics and future application in individual-/community-based diagnosis, or in xenomonitoring requires consideration of relative costs, agreement of standard methods and strategic interpretation of resulting data before control/elimination programmes might best utilize molecular diagnostics to inform decision making. We review current nucleic-acid-based molecular diagnostic methods and highlight the needs and future research required to refine these tools for monitoring and evaluation of control and elimination programmes for four major human helminthiases

    Filarial infection influences mosquito behaviour and fecundity

    Get PDF
    Understanding vector-parasite interactions is increasingly important as we move towards the endpoint goals set by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF), as interaction dynamics may change with reduced transmission pressure. Elimination models used to predict programmatic endpoints include parameters for vector-specific transmission dynamics, despite the fact that our knowledge of the host-seeking behaviour of filariasis infected mosquitoes is lacking. We observed a dynamic, stage-specific and density dependent change in Aedes aegypti behaviour towards host cues when exposed to Brugia malayi filarial parasites. Infected mosquitoes exhibited reduced activation and flight towards a host during the period of larval development (L1/L2), transitioning to a 5 fold increase in activation and flight towards a host when infective stage larvae (L3) were present (p < 0.001). In uninfected control mosquitoes, we observed a reduction in convergence towards a host during the same period. Furthermore, this behaviour was density dependent with non-activated mosquitoes harbouring a greater burden of L1 and L2 larvae while activated mosquitoes harboured a greater number of L3 (p < 0.001). Reductions in fecundity were also density-dependent, and extended to mosquitoes that were exposed to microfilariae but did not support larval development

    Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing

    Get PDF
    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources

    Modelling strategies to break transmission of lymphatic filariasis : aggregation, adherence and vector competence greatly alter elimination

    Get PDF
    Background: With ambitious targets to eliminate lymphatic filariasis over the coming years, there is a need to identify optimal strategies to achieve them in areas with different baseline prevalence and stages of control. Modelling can assist in identifying what data should be collected and what strategies are best for which scenarios. Methods: We develop a new individual-based, stochastic mathematical model of the transmission of lymphatic filariasis. We validate the model by fitting to a first time point and predicting future timepoints from surveillance data in Kenya and Sri Lanka, which have different vectors and different stages of the control programme. We then simulate different treatment scenarios in low, medium and high transmission settings, comparing once yearly mass drug administration (MDA) with more frequent MDA and higher coverage. We investigate the potential impact that vector control, systematic non-compliance and different levels of aggregation have on the dynamics of transmission and control. Results: In all settings, increasing coverage from 65 to 80 % has a similar impact on control to treating twice a year at 65 % coverage, for fewer drug treatments being distributed. Vector control has a large impact, even at moderate levels. The extent of aggregation of parasite loads amongst a small portion of the population, which has been estimated to be highly variable in different settings, can undermine the success of a programme, particularly if high risk sub-communities are not accessing interventions. Conclusion: Even moderate levels of vector control have a large impact both on the reduction in prevalence and the maintenance of gains made during MDA, even when parasite loads are highly aggregated, and use of vector control is at moderate levels. For the same prevalence, differences in aggregation and adherence can result in very different dynamics. The novel analysis of a small amount of surveillance data and resulting simulations highlight the need for more individual level data to be analysed to effectively tailor programmes in the drive for elimination

    Measuring quality of life in opioid dependent people : a systematic review of assessment instruments

    Get PDF
    Purpose Opioid dependence is a chronic relapsing disorder. Despite increasing research on quality of life (QOL) in people with opioid dependence, little attention has been paid to the instruments used. This systematic review examines the suitability of QOL instruments for use in opioid-dependent populations and the instruments’ quality. Methods A systematic search was performed in the databases Medline, PsycInfo, The Cochrane Library, and CINAHL. Articles were eligible if they assessed QOL of opioid-dependent populations using a validated QOL instrument. Item content relevance to opioid-dependent people was evaluated by means of content analysis, and instrument properties were assessed using minimum standards for patient-reported outcome measures. Results Eighty-nine articles were retrieved, yielding sixteen QOL instruments, of which ten were assessed in this review. Of the ten instruments, six were disease specific, but none for opioid dependence. Two instruments had good item content relevance. The conceptual and measurement model were described in seven instruments. Four instruments were developed with input from the respective target population. Eight instruments had low respondent and administrator burden. Psychometric properties were either not assessed in opioid-dependent populations or were inconclusive or moderate. Conclusions No instrument scored perfectly on both the content and properties. The limited suitability of instruments for opioid-dependent people hinders accurate and sensitive measurement of QOL in this population. Future research is in need of an opioid dependence-specific QOL instrument to measure the true impact of the disease on people’s lives and to evaluate treatment-related services

    In Defence of Modest Doxasticism About Delusions

    Get PDF
    Here I reply to the main points raised by the commentators on the arguments put forward in my Delusions and Other Irrational Beliefs (OUP, 2009). My response is aimed at defending a modest doxastic account of clinical delusions, and is articulated in three sections. First, I consider the view that delusions are in-between perceptual and doxastic states, defended by Jacob Hohwy and Vivek Rajan, and the view that delusions are failed attempts at believing or not-quite-beliefs, proposed by Eric Schwitzgebel and Maura Tumulty. Then, I address the relationship between the doxastic account of delusions and the role, nature, and prospects of folk psychology, which is discussed by Dominic Murphy, Keith Frankish, and Maura Tumulty in their contributions. In the final remarks, I turn to the continuity thesis and suggest that, although there are important differences between clinical delusions and non-pathological beliefs, these differences cannot be characterised satisfactorily in epistemic terms. \u

    Changes in malaria burden and transmission in sentinel sites after the roll-out of long-lasting insecticidal nets in Papua New Guinea

    Get PDF
    Papua New Guinea exhibits a complex malaria epidemiology due to diversity in malaria parasites, mosquito vectors, human hosts, and their natural environment. Heterogeneities in transmission and burden of malaria at various scales are likely to affect the success of malaria control interventions, and vice-versa. This manuscript assesses changes in malaria prevalence, incidence and transmission in sentinel sites following the first national distribution of long-lasting insecticidal nets (LLINs).; Before and after the distribution of LLINs, data collection in six purposively selected sentinel sites included clinical surveillance in the local health facility, household surveys and entomological surveys. Not all activities were carried out in all sites. Mosquitoes were collected by human landing catches. Diagnosis of malaria infection in humans was done by rapid diagnostic test, light microscopy and PCR for species confirmation.; Following the roll-out of LLINs, the average monthly malaria incidence rate dropped from 13/1,000 population to 2/1,000 (incidence rate ratio = 0.12; 95 % CI: 0.09-0.17; P &lt; 0.001). The average population prevalence of malaria decreased from 15.7 % pre-LLIN to 4.8 % post-LLIN (adjusted odds ratio = 0.26; 95 % CI: 0.20-0.33; P &lt; 0.001). In general, reductions in incidence and prevalence were more pronounced in infections with P. falciparum than with P. vivax. Additional morbidity indicators (anaemia, splenomegaly, self-reported fever) showed a decreasing trend in most sites. Mean Anopheles man biting rates decreased from 83 bites/person/night pre-LLIN to 31 post-LLIN (P = 0.008). Anopheles species composition differed between sites but everywhere diversity was lower post-LLIN. In two sites, post-LLIN P. vivax infections in anophelines had decreased but P. falciparum infections had increased despite the opposite observation in humans.; LLIN distribution had distinct effects on P. falciparum and P. vivax. Higher resilience of P. vivax may be attributed to relapses from hypnozoites and other biological characteristics favouring the transmission of P. vivax. The effect on vector species composition varied by location which is likely to impact on the effectiveness of LLINs. In-depth and longer-term epidemiological and entomological investigations are required to understand when and where residual transmission occurs and whether observed changes are sustained

    Mosquito behavior change after distribution of bednets results in decreased protection against malaria exposure

    Get PDF
    Behavioral resilience in mosquitoes poses a significant challenge to mosquito control. Although behavior changes in anopheline vectors have been reported over the last decade, there are no empirical data to suggest they compromise the efficacy of vector control in reducing malaria transmission.; In this study, we quantified human exposure to both bites and infective bites of a major malaria vector in Papua New Guinea over the course of 4 years surrounding nationwide bednet distribution. We also quantified malaria infection prevalence in the human population during the same time period.; We observed a shift in mosquito biting to earlier hours of the evening, before individuals are indoors and protected by bednets, followed by a return to preintervention biting rates. As a result, net users and non-net users experienced higher levels of transmission than before the intervention. The personal protection provided by a bednet decreased over the study period and was lowest in the adult population, who may be an important reservoir for transmission. Malaria prevalence decreased in only 1 of 3 study villages after the distribution.; This study highlights the necessity of validating and deploying vector control measures targeting outdoor exposure to control and eliminate malaria

    Infectious disease and health systems modelling for local decision making to control neglected tropical diseases

    Get PDF
    Most neglected tropical diseases (NTDs) have complex life cycles and are challenging to control. The “2020 goals” of control and elimination as a public health programme for a number of NTDs are the subject of significant international efforts and investments. Beyond 2020 there will be a drive to maintain these gains and to push for true local elimination of transmission. However, these diseases are affected by variations in vectors, human demography, access to water and sanitation, access to interventions and local health systems. We therefore argue that there will be a need to develop local quantitative expertise to support elimination efforts. If available now, quantitative analyses would provide updated estimates of the burden of disease, assist in the design of locally appropriate control programmes, estimate the effectiveness of current interventions and support ‘real-time’ updates to local operations. Such quantitative tools are increasingly available at an international scale for NTDs, but are rarely tailored to local scenarios. Localised expertise not only provides an opportunity for more relevant analyses, but also has a greater chance of developing positive feedback between data collection and analysis by demonstrating the value of data. This is essential as rational program design relies on good quality data collection. It is also likely that if such infrastructure is provided for NTDs there will be an additional impact on the health system more broadly. Locally tailored quantitative analyses can help achieve sustainable and effective control of NTDs, but also underpin the development of local health care systems
    corecore