49 research outputs found

    Effects of P-MAPA Immunomodulator on Toll-Like Receptors and p53: Potential Therapeutic Strategies for Infectious Diseases and Cancer

    Get PDF
    BACKGROUND: Compounds that can act as agonists for toll-like receptors (TLRs) may be promising candidates for the development of drugs against infectious diseases and cancer. The present study aimed to characterize the immunomodulatory effects of P-MAPA on TLRs in vitro and in vivo, as well as to investigate its potential as adjuvant therapy in infectious diseases and cancer. METHODS: For these purposes, the activity of P-MAPA on TLRs was assayed in vitro through NF-κB activation in HEK293 cells expressing a given TLR, and using an in vivo animal model for bladder cancer (BC). The antimicrobial activity of P-MAPA was tested against Mycobacterium tuberculosis (TB) in vitro in an MIC assay, and in vivo using an aerosol infection model of murine tuberculosis. Antitumor effects of P-MAPA were tested in an animal model with experimentally induced BC. Moxifloxacin (MXF) and Bacillus Calmette-Guerin (BCG) were used as positive controls in the animal models. RESULTS: The results showed that P-MAPA, administered alone or in combination with MXF, induced significant responses in vivo against TB. In contrast, the compound did not show antimicrobial activity in vitro. P-MAPA showed a significant stimulatory effect on human TLR2 and TLR4 in vitro. In BC, TLR2, TLR4 and p53 protein levels were significantly higher in the P-MAPA group than in the BCG group. The most common histopathological changes in each group were papillary carcinoma in BC group, low-grade intraepithelial neoplasia in BCG group and simple hyperplasia in P-MAPA group. Concerning the toxicological analysis performed during BC treatment, P-MAPA did not show evidence for hepatotoxicity and nephrotoxicity. CONCLUSIONS: In conclusion, P-MAPA acted as TLR ligand in vitro and improved the immunological status in BC, increasing TLR2 and TLR4 protein levels. P-MAPA immunotherapy was more effective in restoring p53 and TLRs reactivities and showed significantly greater antitumor activity than BCG. The activation of TLRs and p53 may provide a hypothetical mechanism for the therapeutic effects in both cancer and infectious diseases. Taken together data obtained will encourage the further investigation of P-MAPA as a potential candidate for the treatment of cancer and infectious diseases

    Development of a Novel Lead that Targets <i>M. tuberculosis</i> Polyketide Synthase 13

    Get PDF
    Widespread resistance to first-line TB drugs is a major problem that will likely only be resolved through the development of new drugs with novel mechanisms of action. We have used structure-guided methods to develop a lead molecule that targets the thioesterase activity of polyketide synthase Pks13, an essential enzyme that forms mycolic acids, required for the cell wall of Mycobacterium tuberculosis. Our lead, TAM16, is a benzofuran class inhibitor of Pks13 with highly potent in vitro bactericidal activity against drug-susceptible and drug-resistant clinical isolates of M. tuberculosis. In multiple mouse models of TB infection, TAM16 showed in vivo efficacy equal to the first-line TB drug isoniazid, both as a monotherapy and in combination therapy with rifampicin. TAM16 has excellent pharmacological and safety profiles, and the frequency of resistance for TAM16 is ∼100-fold lower than INH, suggesting that it can be developed as a new antitubercular aimed at the acute infection. A small molecule inhibitor of M. tuberculosis polyketide synthase shows strong efficacy in murine models of infection.</p

    Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase

    Get PDF
    The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis. Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid

    Importance of Confirming Data on the <i>In Vivo</i> Efficacy of Novel Antibacterial Drug Regimens against Various Strains of Mycobacterium tuberculosis

    Full text link
    ABSTRACT In preclinical testing of antituberculosis drugs, laboratory-adapted strains of Mycobacterium tuberculosis are usually used both for in vitro and in vivo studies. However, it is unknown whether the heterogeneity of M. tuberculosis stocks used by various laboratories can result in different outcomes in tests of antituberculosis drug regimens in animal infection models. In head-to-head studies, we investigated whether bactericidal efficacy results in BALB/c mice infected by inhalation with the laboratory-adapted strains H37Rv and Erdman differ from each other and from those obtained with clinical tuberculosis strains. Treatment of mice consisted of dual and triple drug combinations of isoniazid (H), rifampin (R), and pyrazinamide (Z). The results showed that not all strains gave the same in vivo efficacy results for the drug combinations tested. Moreover, the ranking of HRZ and RZ efficacy results was not the same for the two H37Rv strains evaluated. The magnitude of this strain difference also varied between experiments, emphasizing the risk of drawing firm conclusions for human trials based on single animal studies. The results also confirmed that the antagonism seen within the standard HRZ regimen by some investigators appears to be an M. tuberculosis strain-specific phenomenon. In conclusion, the specific identity of M. tuberculosis strain used was found to be an important variable that can change the apparent outcome of in vivo efficacy studies in mice. We highly recommend confirmation of efficacy results in late preclinical testing against a different M. tuberculosis strain than the one used in the initial mouse efficacy study, thereby increasing confidence to advance potent drug regimens to clinical trials. </jats:p

    Testing of Experimental Compounds in a Relapse Model of Tuberculosis Using Granulocyte-Macrophage Colony-Stimulating Factor Gene-Disrupted Mice▿

    No full text
    This study describes an in vivo model for evaluating the sterilizing activity of compounds against persisting Mycobacterium tuberculosis. The initial treatment with isoniazid and rifampin in granulocyte-macrophage colony-stimulating factor gene-disrupted mice reduced the number of bacteria more than 99% within 3 weeks. A subsequent treatment with individual drugs was performed to assess their activity on the 1% of remaining bacilli and disease relapse

    Intracellular and in vivo evaluation of imidazo [2,1-b]thiazole-5-carboxamide anti- tuberculosis compounds

    No full text
    International audienceThe imidazo[2,1-b]thiazole-5-carboxamides (ITAs) are a promising class of anti-tuberculosis agents shown to have potent activity in vitro and to target QcrB, a key component of the mycobacterial cytochrome bcc-aa3 super complex critical for the electron transport chain. Herein we report the intracellular macrophage potency of nine diverse ITA analogs with MIC values ranging from 0.0625-2.5 μM and mono-drug resistant potency ranging from 0.0017 to 7 μM. The in vitro ADME properties (protein binding, CaCo-2, human microsomal stability and CYP450 inhibition) were determined for an outstanding compound of the series, ND-11543. ND-11543 was tolerable at >500 mg/kg in mice and at a dose of 200 mg/kg displayed good drug exposure in mice with an AUC(0-24h) >11,700 ng·hr/mL and a >24 hr half-life. Consistent with the phenotype observed with other QcrB inhibitors, compound ND-11543 showed efficacy in a chronic murine TB infection model when dosed at 200 mg/kg for 4 weeks. The efficacy was not dependent upon exposure, as pre-treatment with a known CYP450-inhibitor did not substantially improve efficacy. The ITAs are an interesting scaffold for the development of new anti-TB drugs especially in combination therapy based on their favorable properties and novel mechanism of action
    corecore