2,495 research outputs found
Chandra's Close Encounter with the Disintegrating Comets 73P/2006 (Schwassmann--Wachmann--3) Fragment B and C/1999 S4 (LINEAR)
On May 23, 2006 we used the ACIS-S instrument on the Chandra X-ray
Observatory (CXO) to study the X-ray emission from the B fragment of comet
73P/2006 (Schwassmann-Wachmann 3) (73P/B). We obtained a total of 20 ks of CXO
observation time of Fragment B, and also investigated contemporaneous ACE and
SOHO solar wind physical data. The CXO data allow us to spatially resolve the
detailed structure of the interaction zone between the solar wind and the
fragment's coma at a resolution of ~ 1,000 km, and to observe the X-ray
emission due to multiple comet--like bodies. We detect a change in the spectral
signature with the ratio of the CV/OVII line increasing with increasing
collisional opacity as predicted by Bodewits \e (2007). The line fluxes arise
from a combination of solar wind speed, the species that populate the wind and
the gas density of the comet. We are able to understand some of the observed
X-ray morphology in terms of non-gravitational forces that act upon an actively
outgassing comet's debris field. We have used the results of the Chandra
observations on the highly fragmented 73P/B debris field to re-analyze and
interpret the mysterious emission seen from comet C/1999 S4 (LINEAR) on August
1st, 2000, after the comet had completely disrupted. We find the physical
situations to be similar in both cases, with extended X-ray emission due to
multiple, small outgassing bodies in the field of view. Nevertheless, the two
comets interacted with completely different solar winds, resulting in
distinctly different spectra.Comment: accepted by ApJ, 44 Pages, including 4 tables and 14 figure
Rebirth of X-ray Emission from the Born-Again Planetary Nebula A 30
The planetary nebula (PN) A30 is believed to have undergone a very late
thermal pulse resulting in the ejection of knots of hydrogen-poor material.
Using HST images we have detected the angular expansion of these knots and
derived an age of 850+280-150 yr. To investigate the spectral and spatial
properties of the soft X-ray emission detected by ROSAT, we have obtained
Chandra and XMM-Newton observations of A30. The X-ray emission from A30 can be
separated into two components: a point-source at the central star and diffuse
emission associated with the hydrogen-poor knots and the cloverleaf structure
inside the nebular shell. To help us assess the role of the current stellar
wind in powering this X-ray emission, we have determined the stellar parameters
of the central star of A 30 using a non-LTE model fit to its optical and UV
spectrum. The spatial distribution and spectral properties of the diffuse X-ray
emission is suggestive that it is generated by the post-born-again and present
fast stellar winds interacting with the hydrogen-poor ejecta of the born-again
event. This emission can be attributed to shock-heated plasma, as the
hydrogen-poor knots are ablated by the stellar winds, under which circumstances
the efficient mass-loading of the present fast stellar wind raises its density
and damps its velocity to produce the observed diffuse soft X-rays. Charge
transfer reactions between the ions of the stellar winds and material of the
born-again ejecta has also been considered as a possible mechanism for the
production of diffuse X-ray emission, and upper limits on the expected X-ray
production by this mechanism have been derived. The origin of the X-ray
emission from the central star of A 30 is puzzling: shocks in the present fast
stellar wind and photospheric emission can be ruled out, while the development
of a new, compact hot bubble confining the fast stellar wind seems implausible.Comment: 29 pages, 11 figures, 4 tables; accepted for publication by Ap
Simultaneous Swift X-ray and UV views of comet C/2007 N3 (Lulin)
We present an analysis of simultaneous X-Ray and UV observations ofcomet
C/2007 N3 (Lulin) taken on three days between January 2009 and March 2009 using
the Swift observatory. For our X-ray observations, we used basic transforms to
account for the movement of the comet to allow the combination of all available
data to produce an exposure-corrected image. We fit a simple model to the
extracted spectrum and measured an X-ray flux of 4.3+/-1.3 * 10^-13 ergs cm-2
s-1 in the 0.3 to 1.0 keV band. In the UV, we acquired large-aperture
photometry and used a coma model to derive water production rates given
assumptions regarding the distribution of water and its dissociation into OH
molecules about the comet's nucleus.
We compare and discuss the X-ray and UV morphology of the comet. We show that
the peak of the cometary X-ray emission is offset sunward of the UV peak
emission, assumed to be the nucleus, by approximately 35,000 km. The offset
observed, the shape of X-ray emission and the decrease of the X-ray emission
comet-side of the peak, suggested that the comet was indeed collisionally thick
to charge exchange, as expected from our measurements of the comet's water
production rate (6--8 10^28 mol. s-1). The X-ray spectrum is consistent with
solar wind charge exchange emission, and the comet most likely interacted with
a solar wind depleted of very highly ionised oxygen. We show that the measured
X-ray lightcurve can be very well explained by variations in the comet's gas
production rates, the observing geometry and variations in the solar wind flux.Comment: Paper accepted for publication in Astronomy and Astrophysics, 6 March
2012, 12 pages, 8 colour figures, one tabl
Investigation of sensitivity for coagulation factor deficiency in APTT and PT : how to perform it?
The ion-induced charge-exchange X-ray emission of the Jovian Auroras: Magnetospheric or solar wind origin?
A new and more comprehensive model of charge-exchange induced X-ray emission,
due to ions precipitating into the Jovian atmosphere near the poles, has been
used to analyze spectral observations made by the Chandra X-ray Observatory.
The model includes for the first time carbon ions, in addition to the oxygen
and sulfur ions previously considered, in order to account for possible ion
origins from both the solar wind and the Jovian magnetosphere. By comparing the
model spectra with newly reprocessed Chandra observations, we conclude that
carbon ion emission provides a negligible contribution, suggesting that solar
wind ions are not responsible for the observed polar X-rays. In addition,
results of the model fits to observations support the previously estimated
seeding kinetic energies of the precipitating ions (~0.7-2 MeV/u), but infer a
different relative sulfur to oxygen abundance ratio for these Chandra
observations.Comment: 11 pages, 2 figures, 2 tables, submitted to ApJ Lette
Discovery of X-rays from Mars with Chandra
On 4 July 2001, X-rays from Mars were detected for the first time. The
observation was performed with the ACIS-I detector onboard Chandra and yielded
data of high spatial and temporal resolution, together with spectral
information. Mars is clearly detected as an almost fully illuminated disk, with
an indication of limb brightening at the sunward side, accompanied by some
fading on the opposite side. The morphology and the X-ray luminosity of ~4 MW
are fully consistent with fluorescent scattering of solar X-rays in the upper
Mars atmosphere. The X-ray spectrum is dominated by a single narrow emission
line, which is most likely caused by O-K_alpha fluorescence. No evidence for
temporal variability is found. This is in agreement with the solar X-ray flux,
which was almost constant during the observation. In addition to the X-ray
fluorescence, there is evidence for an additional source of X-ray emission,
indicated by a faint X-ray halo which can be traced to about three Mars radii,
and by an additional component in the X-ray spectrum of Mars, which has a
similar spectral shape as the halo. Within the available limited statistics,
the spectrum of this component can be characterized by 0.2 keV thermal
bremsstrahlung emission. This is indicative of charge exchange interactions
between highly charged heavy ions in the solar wind and exospheric hydrogen and
oxygen around Mars. Although the observation was performed at the onset of a
global dust storm, no evidence for dust-related X-ray emission was found.Comment: 11 pages, 16 figure
Spitzer IRS Spectroscopy of the 10 Myr-old EF Cha Debris Disk: Evidence for Phyllosilicate-Rich Dust in the Terrestrial Zone
We describe Spitzer IRS spectroscopic observations of the 10 Myr-old star, EF
Cha. Compositional modeling of the spectra from 5 {\mu}m to 35 {\mu}m confirms
that it is surrounded by a luminous debris disk with LD/L\star ~ 10-3,
containing dust with temperatures between 225 K and 430 K characteristic of the
terrestrial zone. The EF Cha spectrum shows evidence for many solid-state
features, unlike most cold, low-luminosity debris disks but like some other
10-20 Myr-old luminous, warm debris disks (e.g. HD 113766A). The EF Cha debris
disk is unusually rich in a species or combination of species whose
emissivities resemble that of finely powdered, laboratory-measured
phyllosilicate species (talc, saponite, and smectite), which are likely
produced by aqueous alteration of primordial anhydrous rocky materials. The
dust and, by inference, the parent bodies of the debris also contain abundant
amorphous silicates and metal sulfides, and possibly water ice. The dust's
total olivine to pyroxene ratio of ~ 2 also provides evidence of aqueous
alteration. The large mass volume of grains with sizes comparable to or below
the radiation blow-out limit implies that planetesimals may be colliding at a
rate high enough to yield the emitting dust but not so high as to devolatize
the planetesimals via impact processing. Because phyllosilicates are produced
by the interactions between anhydrous rock and warm, reactive water, EF Cha's
disk is a likely signpost for water delivery to the terrestrial zone of a young
planetary system.Comment: 21 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Nous – infinis entre deux fins
Dans cet article, je tente d’étudier l’oscillation entre les concepts de fini et d’infini dans divers textes de Jacques Derrida et son incidence sur les problématiques de la promesse et de la mort. Cette étude me conduit à considérer une proposition de Jacques Derrida sur un « nous infini » face au « soleil fini » comme une réécriture du Soleil placé en abîme de Francis Ponge.In this paper, I set out to study the oscillation between the concepts of « the finite » and « the infinite » in a series of texts by Jacques Derrida as well as its effect on the issues of promise and death. This study leads me to consider the idea of a « nous infini », in relationship to the « soleil fini » that was put forth by Jacques Derrida in his rewriting of Francis Ponge’s Soleil placé en abîme
Measurement of the Cosmic Optical Background using the Long Range Reconnaissance Imager on New Horizons
The cosmic optical background is an important observable that constrains
energy production in stars and more exotic physical processes in the universe,
and provides a crucial cosmological benchmark against which to judge theories
of structure formation. Measurement of the absolute brightness of this
background is complicated by local foregrounds like the Earth's atmosphere and
sunlight reflected from local interplanetary dust, and large discrepancies in
the inferred brightness of the optical background have resulted. Observations
from probes far from the Earth are not affected by these bright foregrounds.
Here we analyze data from the Long Range Reconnaissance Imager (LORRI)
instrument on NASA's New Horizons mission acquired during cruise phase outside
the orbit of Jupiter, and find a statistical upper limit on the optical
background's brightness similar to the integrated light from galaxies. We
conclude that a carefully performed survey with LORRI could yield uncertainties
comparable to those from galaxy counting measurements.Comment: 35 pages, 11 figures, published in Nature Communication
- …
