12 research outputs found

    Human Placental Extract Delays In Vitro Cellular Senescence through the Activation of NRF2-Mediated Antioxidant Pathway

    Get PDF
    Senescent cells accumulate in the organs of aged animals and exacerbate organ dysfunction, resulting in age-related diseases. Oxidative stress accelerates cellular senescence. Placental extract, used in the alleviation of menopausal symptoms and promotion of wound healing and liver regeneration, reportedly protects against oxidative stress. In this study, we investigated the effects of human placental extract (HPE) on cellular senescence in normal human dermal fibroblasts (NHDFs) under oxidative stress conditions. We demonstrated that HPE delays the onset of cellular senescence. Next-generation sequencing analysis revealed that under oxidative stress conditions, HPE treatment enhanced the expression of the antioxidant genes CYGB, APOE, NQO1, and PTGS1. Further, HPE treatment under oxidative stress conditions increased the protein level of nuclear factor-erythroid factor 2-related factor 2 (NRF2)—a vital molecule in the antioxidant pathway—via post-transcriptional and/or post-translational regulations. These findings indicate that HPE treatment in NHDFs, under chronic oxidative stress, delays cellular senescence by mitigating oxidative stress via upregulation of the NRF2-mediated antioxidant pathway, and HPE treatment could potentially ameliorate skin-aging-associated damage, in vivo

    Hyperparasitaemic human Plasmodium knowlesi infection with atypical morphology in peninsular Malaysia

    Get PDF
    Abstract Plasmodium knowlesi is a potentially life-threatening zoonotic malaria parasite due to its relatively short erythrocytic cycle. Microscopic identification of P. knowlesi is difficult, with “compacted parasite cytoplasm” being one of the important identifying keys. This report is about a case of hyperparasitaemic human P. knowlesi infection (27% parasitaemia) with atypical amoeboid morphology. A peninsular Malaysian was admitted to the hospital with malaria. He suffered anaemia and acute kidney function impairment. Microscopic examination, assisted by nested PCR and sequencing confirmed as P. knowlesi infection. With anti-malarial treatment and several medical interventions, patient survived and recovered. One-month medical follow-up was performed after recovery and no recrudescence was noted. This case report highlights the extreme hyperparasitaemic setting, the atypical morphology of P. knowlesi in the patient’s erythrocytes, as well as the medical interventions involved in this successfully treated case.</jats:p

    Specific, sensitive and rapid detection of human plasmodium knowlesi infection by loop-mediated isothermal amplification (LAMP) in blood samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence of <it>Plasmodium knowlesi </it>in humans, which is in many cases misdiagnosed by microscopy as <it>Plasmodium malariae </it>due to the morphological similarity has contributed to the needs of detection and differentiation of malaria parasites. At present, nested PCR targeted on <it>Plasmodium </it>ssrRNA genes has been described as the most sensitive and specific method for Plasmodium detection. However, this method is costly and requires trained personnel for its implementation. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method was developed for the clinical detection of <it>P. knowlesi</it>. The sensitivity and specificity of LAMP was evaluated in comparison to the results obtained via microscopic examination and nested PCR.</p> <p>Methods</p> <p>LAMP assay was developed based on <it>P. knowlesi </it>genetic material targeting the apical membrane antigen-1 (AMA-1) gene. The method uses six primers that recognize eight regions of the target DNA and it amplifies DNA within an hour under isothermal conditions (65°C) in a water-bath.</p> <p>Results</p> <p>LAMP is highly sensitive with the detection limit as low as ten copies for AMA-1. LAMP detected malaria parasites in all confirm cases (n = 13) of <it>P. knowlesi </it>infection (sensitivity, 100%) and none of the negative samples (specificity, 100%) within an hour. LAMP demonstrated higher sensitivity compared to nested PCR by successfully detecting a sample with very low parasitaemia (< 0.01%).</p> <p>Conclusion</p> <p>With continuous efforts in the optimization of this assay, LAMP may provide a simple and reliable test for detecting <it>P. knowlesi </it>malaria parasites in areas where malaria is prevalent.</p

    Genetic analysis of the subunit architecture that determines the plasma membrane localization of TOR complex 2

    Get PDF
    奈良先端科学技術大学院大学博士(バイオサイエンス)doctoral thesi

    Human Placental Extract Delays In Vitro Cellular Senescence through the Activation of NRF2-Mediated Antioxidant Pathway

    Get PDF
    Senescent cells accumulate in the organs of aged animals and exacerbate organ dysfunction, resulting in age-related diseases. Oxidative stress accelerates cellular senescence. Placental extract, used in the alleviation of menopausal symptoms and promotion of wound healing and liver regeneration, reportedly protects against oxidative stress. In this study, we investigated the effects of human placental extract (HPE) on cellular senescence in normal human dermal fibroblasts (NHDFs) under oxidative stress conditions. We demonstrated that HPE delays the onset of cellular senescence. Next-generation sequencing analysis revealed that under oxidative stress conditions, HPE treatment enhanced the expression of the antioxidant genes CYGB, APOE, NQO1, and PTGS1. Further, HPE treatment under oxidative stress conditions increased the protein level of nuclear factor-erythroid factor 2-related factor 2 (NRF2)—a vital molecule in the antioxidant pathway—via post-transcriptional and/or post-translational regulations. These findings indicate that HPE treatment in NHDFs, under chronic oxidative stress, delays cellular senescence by mitigating oxidative stress via upregulation of the NRF2-mediated antioxidant pathway, and HPE treatment could potentially ameliorate skin-aging-associated damage, in vivo

    Human placental extract activates a wide array of gene expressions related to skin functions

    No full text
    AbstractAs skin aging is one of the most common dermatological concerns in recent years, scientific research has promoted treatment strategies aimed at preventing or reversing skin aging. Breakdown of the extracellular matrix (ECM), such as collagen and elastin fibers, in the skin results in decreased skin elasticity and tension. Cutaneous cells, especially fibroblasts in the dermis layer of the skin, mainly produce ECM proteins. Although clinical studies have demonstrated that placental extract (PE) has positive effects on skin health, the molecular mechanisms by which PE acts against skin aging are still largely unknown. In this study, we performed RNA-sequence analysis to investigate whether human PE (HPE) alters ECM-related gene expression in normal human dermal fibroblast (NHDF) cells. Gene ontology analysis showed that genes related to extracellular matrix/structure organization, such as COL1A1, COL5A3, ELN, and HAS2 were highly enriched, and most of these genes were upregulated. We further confirmed that the HPE increased the type I collagen, proteoglycan versican, elastin, and hyaluronan levels in NHDF cells. Our results demonstrate that HPE activates global ECM-related gene expression in NHDF cells, which accounts for the clinical evidence that the HPE affects skin aging.</jats:p

    Modulation of TOR complex 2 signaling by the stress-activated MAPK pathway in fission yeast

    Full text link
    Sin1 is a substrate-binding subunit of Target Of Rapamycin Complex 2 (TORC2), an evolutionarily conserved protein kinase complex. In fission yeast, Sin1 was also identified as a protein that interacts with Spc1/Sty1 stress-activated protein kinase (SAPK) and therefore, this study examined the relationship between TORC2 and Spc1 signaling. We found that the common docking (CD) domain of Spc1 interacts with a cluster of basic amino acid residues in Sin1. Although diminished TORC2 activity in the absence of the functional Spc1 cascade suggests positive regulation of TORC2 by Spc1, such regulation appears to be independent of the Sin1-Spc1 interaction. Hyperosmotic stress transiently inhibits TORC2, and its swift recovery is dependent on Spc1, the Atf1 transcription factor, and the Gpd1 glycelrol-3-phosphate dehydrogenase, whose expression is induced upon osmostress by the Spc1-Atf1 pathway. Thus, cellular adaptation to osmostress seems to be important for TORC2 reactivation, though Spc1 and Atf1 contribute to TORC2 activation also in the absence of osmostress. These results indicate coordinated actions of the SAPK and TORC2 pathways, both of which are essential for fission yeast cells to survive environmental stress.</jats:p
    corecore