767 research outputs found
Hollow cathode plasma penetration study Final report
Hollow cathode electron beam discharge for penetrating plasma sheath around reentry vehicl
Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests
Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere.
Despite its essential role in carbon and nutrient cycling, the temperature sensitivity
of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in
tropical montane wet forests where the warming trend may be amplified compared
to tropical wet forests at lower elevations. We quantified leaf litter decomposition
rates along a highly constrained 5.2 ◦C mean annual temperature (MAT) gradient in
tropical montane wet forests on the Island ofHawaii. Dominant vegetation, substrate
type and age, soil moisture, and disturbance history are all nearly constant across this
gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition
and nutrient release. Leaf litter decomposition rates were a positive linear function
of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31
days for each 1 ◦C increase in MAT. Our estimate of the Q10 temperature coefficient
for leaf litter decomposition was 2.17, within the commonly reported range
for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of
ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months
declined linearly with increasing MAT from ∼88% of initial N at the coolest site to
∼74% at the warmest site. The lack of net N immobilization during all three litter
collection periods at all MAT plots indicates that N was not limiting to leaf litter
decomposition, regardless of temperature. These results suggest that leaf litter decay
in tropical montane wet forests may be more sensitive to rising MAT than in tropical
lowland wet forests, and that increased rates of N release from decomposing litter
could delay or prevent progressive N limitation to net primary productivity with
climate warming
Accelerated soil carbon loss does not explain warming related increases in soil CO2 efflux
The universally observed exponential increase in soil-surface CO2 efflux (‘soil respiration’; FS) with increasing temperature has led to speculation that global warming will accelerate soil-organic-carbon (SOC) decomposition, reduce SOC storage, and drive a positive feedback to future warming. However, interpreting temperature–FS relationships, and so modelling terrestrial carbon balance in a warmer world, is complicated by the many sources of respired carbon that contribute to FS (ref. 3) and a poor understanding of how temperature influences SOC decomposition rates. Here we quantified FS, litterfall, bulk SOC and SOC fraction size and turnover, and total below-ground carbon flux (TBCF) across a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forest. From these, we determined that: increases in TBCF and litterfall explain >90% of the increase in FS with MAT; bulk SOC and SOC fraction size and turnover rate do not vary with MAT; and increases in TBCF and litterfall do not influence SOC storage or turnover on century to millennial timescales. This gradient study shows that for tropical montane wet forest, long-term and whole-ecosystem warming accelerates below-ground carbon processes with no apparent impact on SOC storage
Progress in Payload Separation Risk Mitigation for a Deployable Venus Heat Shield
A deployable decelerator known as the Adaptive Deployable Entry and Placement Technology (ADEPT) offers substantial science and mass savings for the Venus In Situ Explorer (VISE) mission. The lander and science payload must be separated from ADEPT during atmospheric entry. This paper presents a trade study of the separation system concept of operations and provides a conceptual design of the baseline: aft-separation with a subsonic parachute. Viability of the separation system depends on the vehicle's dynamic stability characteristics during deceleration from supersonic to subsonic speeds. A trajectory sensitivity study presented shows that pitch damping and Venusian winds drive stability prior to parachute deployment, while entry spin rate is not a driver of stability below Mach 5. Additionally, progress in free-flight CFD techniques capable of computing aerodynamic damping parameters is presented. Exploratory simulations of ADEPT at a constant speed of Mach number of 0.8 suggest the vehicle may have an oscillation limit cycle near 5 angle-of-attack. The proposed separation system conceptual design is thought to be viable
Effect of C∕Si ratio on deep levels in epitaxial 4H–SiC
Changing the ratio of carbon to silicon during the epitaxial 4H–SiC growth is expected to alter the dominant deep level trap, which has been attributed to a native defect. The C∕Si ratio was changed from one to six during epitaxialgrowth of SiC. Diodes fabricated on the epitaxial layer were then characterized using current-voltage and deep level transient spectroscopy. The single peak at 340K (Z1/Z2 peak), was deconvolved into two traps, closely spaced in energy. The concentration of one of the Z1/Z2 traps decreased with increasing C∕Si ratio. This result opposes theoretical predictions of carboninterstitial components, and supports assignment to a silicon antisite or carbonvacancy relationship. The concentration of the second component of the peak at 340K did not depend on the C∕Si ratio, which would indicate an impurity in an interstitial site
The Promise of Catholic Schools for Educating the Future of Los Angeles
This study examined the impact of Catholic education on elementary and secondary students in Los Angeles. The study focused on the continuation and graduation rates of ethnic minority students who received special funding from the Catholic Education Foundation (CEF). Using qualitative and quantitative measures, the study revealed that students from ethnic minority and low-income communities enrolled in Catholic schools are graduating from secondary schools at a higher rate than their peers who are enrolled in public schools. Furthermore, survey data was collected from principals and parents of these students enrolled in Catholic schools. The study shows that a Catholic education has a major impact on the lives of these students, their parents, and their communities
Light interception principally drives the understory response to boxelder invasion in riparian forests
Since several decades, American boxelder (Acer negundo) is replacing white willow (Salix alba) riparian forests along southern European rivers. This study aims to evaluate the consequences of boxelder invasion on understory community in riparian areas. We determined the understory species richness, composition and biomass in boxelder and white willow stands located in three riparian forests, representative of three rivers with distinct hydrological regimes. We investigated correlation of these variables to soil moisture and particle size, main soil nutrient stocks, potential nitrification and denitrification, tree canopy cover and photosynthetic active radiation (PAR) at the ground level. A greenhouse experiment was then conducted to identify the causal factors responsible for changes in the understory. The effect of soil type, PAR level and water level on the growth and the biomass production of Urtica dioica were examined. A lower plant species richness and biomass, and a modification of community composition were observed for boxelder understory in all sites, regardless of their environmental characteristics. The strongest modification that follows boxelder invasion was the decline in U. dioica, the dominant species of the white willow forest understory. These differences were mainly correlated with a lower incident PAR under boxelder canopy. The greenhouse experiment identified PAR level as the main factor responsible for the changes in U. dioica stem number and biomass. Our results indicate that adult boxelder acts as an ecosystem engineer that decreases light availability. The opportunistic invasion by boxelder leads to important understory changes, which could alter riparian ecosystem functioning
Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements
- …
