152 research outputs found

    Systemwide Clinical Ultrasound Program Development: An Expert Consensus Model.

    Get PDF
    Clinical ultrasound (CUS) is integral to the practice of an increasing number of medical specialties. Guidelines are needed to ensure effective CUS utilization across health systems. Such guidelines should address all aspects of CUS within a hospital or health system. These include leadership, training, competency, credentialing, quality assurance and improvement, documentation, archiving, workflow, equipment, and infrastructure issues relating to communication and information technology. To meet this need, a group of CUS subject matter experts, who have been involved in institution- and/or systemwide clinical ultrasound (SWCUS) program development convened. The purpose of this paper was to create a model for SWCUS development and implementation

    Development of the Critical Thinking Toolkit (CriTT): a measure of student attitudes and beliefs about critical thinking

    Get PDF
    Critical thinking is an important focus in higher education and is essential for good academic achievement. We report the development of a tool to measure critical thinking for three purposes: (i) to evaluate student perceptions and attitudes about critical thinking, (ii) to identify students in need of support to develop their critical thinking, and (iii) to predict academic performance. Seventy-seven items were generated from focus groups, interviews and the critical thinking literature. Data were collected from 133 psychology students. Factor Analysis revealed three latent factors based on a reduced set of 27 items. These factors were characterised as: Confidence in Critical Thinking; Valuing Critical Thinking; and Misconceptions. Reliability analysis demonstrated that the sub-scales were reliable. Convergent validity with measures of grade point average and argumentation skill was shown, with significant correlations between subscales and validation measures. Most notably, in multiple regression analysis, the three sub-scales from the new questionnaire substantially increased the variance in grade point average accounted for by measures of reflective thinking and argumentation. To sum, the resultant scale offers a measure that is simple to administer, can be used as a diagnostic tool to identify students who need support in developing their critical thinking skills, and can also predict academic performance

    Comparative physical maps derived from BAC end sequences of tilapia (Oreochromis niloticus)

    Get PDF
    Background: The Nile tilapia is the second most important fish in aquaculture. It is an excellent laboratory model, and is closely related to the African lake cichlids famous for their rapid rates of speciation. A suite of genomic resources has been developed for this species, including genetic maps and ESTs. Here we analyze BAC endsequences to develop comparative physical maps, and estimate the number of genome rearrangements, between tilapia and other model fish species. Results: We obtained sequence from one or both ends of 106,259 tilapia BACs. BLAST analysis against the genome assemblies of stickleback, medaka and pufferfish allowed identification of homologies for approximately 25,000 BACs for each species. We calculate that rearrangement breakpoints between tilapia and these species occur about every 3 Mb across the genome. Analysis of 35,000 clones previously assembled into contigs by restriction fingerprints allowed identification of longer-range syntenies. Conclusions: Our data suggest that chromosomal evolution in recent teleosts is dominated by alternate loss of gene duplicates, and by intra-chromosomal rearrangements (~one per million years). These physical maps are a useful resource for comparative positional cloning of traits in cichlid fishes. The paired BAC end sequences from these clones will be an important resource for scaffolding forthcoming shotgun sequence assemblies of the tilapia genome. (Résumé d'auteur

    Analysis of the putative role of CR1 in Alzheimer’s disease: Genetic association, expression and function

    Get PDF
    Chronic activation of the complement system and induced inflammation are associated with neuropathology in Alzheimer's disease (AD). Recent large genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) in the C3b/C4b receptor (CR1 or CD35) that are associated with late onset AD. Here, anti-CR1 antibodies (Abs) directed against different epitopes of the receptor, were used to localize CR1 in brain, and relative binding affinities of the CR1 ligands, C1q and C3b, were assessed by ELISA. Most Abs tested stained red blood cells in blood vessels but showed no staining in brain parenchyma. However, two monoclonal anti-CR1 Abs labeled astrocytes in all of the cases tested, and this reactivity was preabsorbed by purified recombinant human CR1. Human brain-derived astrocyte cultures were also reactive with both mAbs. The amount of astrocyte staining varied among the samples, but no consistent difference was conferred by diagnosis or the GWAS-identified SNPs rs4844609 or rs6656401. Plasma levels of soluble CR1 did not correlate with diagnosis but a slight increase was observed with rs4844609 and rs6656401 SNP. There was also a modest but statistically significant increase in relative binding activity of C1q to CR1 with the rs4844609 SNP compared to CR1 without the SNP, and of C3b to CR1 in the CR1 genotypes containing the rs6656401 SNP (also associated with the larger isoform of CR1) regardless of clinical diagnosis. These results suggest that it is unlikely that astrocyte CR1 expression levels or C1q or C3b binding activity are the cause of the GWAS identified association of CR1 variants with AD. Further careful functional studies are needed to determine if the variant-dictated number of CR1 expressed on red blood cells contributes to the role of this receptor in the progression of AD, or if another mechanism is involved

    BORIS expression in ovarian cancer precursor cells alters the CTCF cistrome and enhances invasiveness through GALNT14

    Get PDF
    High-grade serous carcinoma (HGSC) is the most aggressive and predominant form of epithelial ovarian cancer and the leading cause of gynecological cancer death. We have previously shown that CTCFL (also known as BORIS, Brother of the Regulator of Imprinted Sites) is expressed in most ovarian cancers, and is associated with global and promoter-specific DNA hypomethylation, advanced tumor stage, and poor prognosis. To explore its role in HGSC, we expressed BORIS in human fallopian tube secretory epithelial cells (FTSEC), the presumptive cells of origin for HGSC. BORIS-expressing cells exhibited increased motility and invasion, and BORIS expression was associated with alterations in several cancer-associated gene expression networks, including fatty acid metabolism, TNF signaling, cell migration, and ECM-receptor interactions. Importantly, GALNT14, a glycosyltransferase gene implicated in cancer cell migration and invasion, was highly induced by BORIS, and GALNT14 knockdown significantly abrogated BORIS-induced cell motility and invasion. In addition, in silico analyses provided evidence for BORIS and GALNT14 co-expression in several cancers. Finally, ChIP-seq demonstrated that expression of BORIS was associated with de novo and enhanced binding of CTCF at hundreds of loci, many of which correlated with activation of transcription at target genes, including GALNT14. Taken together, our data indicate that BORIS may promote cell motility and invasion in HGSC via upregulation of GALNT14, and suggests BORIS as a potential therapeutic target in this malignancy

    Assessing the immunogenicity risk of salmon calcitonin peptide impurities using in silico and in vitro methods

    Get PDF
    Advances in synthetic peptide synthesis have enabled rapid and cost-effective peptide drug manufacturing. For this reason, peptide drugs that were first produced using recombinant DNA (rDNA) technology are now being produced using solid- and liquid-phase peptide synthesis. While peptide synthesis has some advantages over rDNA expression methods, new peptide-related impurities that differ from the active pharmaceutical ingredient (API) may be generated during synthesis. These impurity byproducts of the original peptide sequence feature amino acid insertions, deletions, and side-chain modifications that may alter the immunogenicity risk profile of the drug product. Impurities resulting from synthesis have become the special focus of regulatory review and approval for human use, as outlined in the FDA’s Center for Drug Evaluation and Research guidance document, “ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin,” published in 2021. This case study illustrates how in silico and in vitro methods can be applied to assess the immunogenicity risk of impurities that may be present in synthetic generic versions of the salmon calcitonin (SCT) drug product. Sponsors of generic drug abbreviated new drug applications (ANDAs) should consider careful control of these impurities (for example, keeping the concentration of the immunogenic impurities below the cut-off recommended by FDA regulators). Twenty example SCT impurities were analyzed using in silico tools and assessed as having slightly more or less immunogenic risk potential relative to the SCT API peptide. Class II human leukocyte antigen (HLA)-binding assays provided independent confirmation that a 9-mer sequence present in the C-terminus of SCT binds promiscuously to multiple HLA DR alleles, while T-cell assays confirmed the expected T-cell responses to SCT and selected impurities. In silico analysis combined with in vitro assays that directly compare the API to each individual impurity peptide may be a useful approach for assessing the potential immunogenic risk posed by peptide impurities that are present in generic drug products

    A Practical Platform for Blood Biomarker Study by Using Global Gene Expression Profiling of Peripheral Whole Blood

    Get PDF
    Background: Although microarray technology has become the most common method for studying global gene expression, a plethora of technical factors across the experiment contribute to the variable of genome gene expression profiling using peripheral whole blood. A practical platform needs to be established in order to obtain reliable and reproducible data to meet clinical requirements for biomarker study. Methods and Findings: We applied peripheral whole blood samples with globin reduction and performed genome-wide transcriptome analysis using Illumina BeadChips. Real-time PCR was subsequently used to evaluate the quality of array data and elucidate the mode in which hemoglobin interferes in gene expression profiling. We demonstrated that, when applied in the context of standard microarray processing procedures, globin reduction results in a consistent and significant increase in the quality of beadarray data. When compared to their pre-globin reduction counterparts, post-globin reduction samples show improved detection statistics, lowered variance and increased sensitivity. More importantly, gender gene separation is remarkably clearer in post-globin reduction samples than in pre-globin reduction samples. Our study suggests that the poor data obtained from pre-globin reduction samples is the result of the high concentration of hemoglobin derived from red blood cells either interfering with target mRNA binding or giving the pseudo binding background signal. Conclusion: We therefore recommend the combination of performing globin mRNA reduction in peripheral whole blood samples and hybridizing on Illumina BeadChips as the practical approach for biomarker study

    Establishment of a Replicating Plasmid in Rickettsia prowazekii

    Get PDF
    Rickettsia prowazekii, the causative agent of epidemic typhus, grows only within the cytosol of eukaryotic host cells. This obligate intracellular lifestyle has restricted the genetic analysis of this pathogen and critical tools, such as replicating plasmid vectors, have not been developed for this species. Although replicating plasmids have not been reported in R. prowazekii, the existence of well-characterized plasmids in several less pathogenic rickettsial species provides an opportunity to expand the genetic systems available for the study of this human pathogen. Competent R. prowazekii were transformed with pRAM18dRGA, a 10.3 kb vector derived from pRAM18 of R. amblyommii. A plasmid-containing population of R. prowazekii was obtained following growth under antibiotic selection, and the rickettsial plasmid was maintained extrachromosomally throughout multiple passages. The transformant population exhibited a generation time comparable to that of the wild type strain with a copy number of approximately 1 plasmid per rickettsia. These results demonstrate for the first time that a plasmid can be maintained in R. prowazekii, providing an important genetic tool for the study of this obligate intracellular pathogen

    Trans-Dominant Inhibition of Prion Propagation In Vitro Is Not Mediated by an Accessory Cofactor

    Get PDF
    Previous studies identified prion protein (PrP) mutants which act as dominant negative inhibitors of prion formation through a mechanism hypothesized to require an unidentified species-specific cofactor termed protein X. To study the mechanism of dominant negative inhibition in vitro, we used recombinant PrPC molecules expressed in Chinese hamster ovary cells as substrates in serial protein misfolding cyclic amplification (sPMCA) reactions. Bioassays confirmed that the products of these reactions are infectious. Using this system, we find that: (1) trans-dominant inhibition can be dissociated from conversion activity, (2) dominant-negative inhibition of prion formation can be reconstituted in vitro using only purified substrates, even when wild type (WT) PrPC is pre-incubated with poly(A) RNA and PrPSc template, and (3) Q172R is the only hamster PrP mutant tested that fails to convert into PrPSc and that can dominantly inhibit conversion of WT PrP at sub-stoichiometric levels. These results refute the hypothesis that protein X is required to mediate dominant inhibition of prion propagation, and suggest that PrP molecules compete for binding to a nascent seeding site on newly formed PrPSc molecules, most likely through an epitope containing residue 172

    The descriptive epidemiology of DSM-IV Adult ADHD in the World Health Organization World Mental Health Surveys

    Get PDF
    We previously reported on the cross-national epidemiology of ADHD from the first 10 countries in the WHO World Mental Health (WMH) Surveys. The current report expands those previous findings to the 20 nationally or regionally representative WMH surveys that have now collected data on adult ADHD. The Composite International Diagnostic Interview (CIDI) was administered to 26,744 respondents in these surveys in high-, upper-middle-, and low-/lower-middle-income countries (68.5% mean response rate). Current DSM-IV/CIDI adult ADHD prevalence averaged 2.8% across surveys and was higher in high (3.6%)- and upper-middle (3.0%)- than low-/lower-middle (1.4%)-income countries. Conditional prevalence of current ADHD averaged 57.0% among childhood cases and 41.1% among childhood subthreshold cases. Adult ADHD was significantly related to being male, previously married, and low education. Adult ADHD was highly comorbid with DSM-IV/CIDI anxiety, mood, behavior, and substance disorders and significantly associated with role impairments (days out of role, impaired cognition, and social interactions) when controlling for comorbidities. Treatment seeking was low in all countries and targeted largely to comorbid conditions rather than to ADHD. These results show that adult ADHD is prevalent, seriously impairing, and highly comorbid but vastly under-recognized and undertreated across countries and cultures
    corecore