13,938 research outputs found
Information Gathering in Ad-Hoc Radio Networks with Tree Topology
We study the problem of information gathering in ad-hoc radio networks
without collision detection, focussing on the case when the network forms a
tree, with edges directed towards the root. Initially, each node has a piece of
information that we refer to as a rumor. Our goal is to design protocols that
deliver all rumors to the root of the tree as quickly as possible. The protocol
must complete this task within its allotted time even though the actual tree
topology is unknown when the computation starts. In the deterministic case,
assuming that the nodes are labeled with small integers, we give an O(n)-time
protocol that uses unbounded messages, and an O(n log n)-time protocol using
bounded messages, where any message can include only one rumor. We also
consider fire-and-forward protocols, in which a node can only transmit its own
rumor or the rumor received in the previous step. We give a deterministic
fire-and- forward protocol with running time O(n^1.5), and we show that it is
asymptotically optimal. We then study randomized algorithms where the nodes are
not labelled. In this model, we give an O(n log n)-time protocol and we prove
that this bound is asymptotically optimal
A new method to assess spatial variations of outdoor thermal comfort: Onsite monitoring results and implications for precinct planning
postprin
The optical microscopy with virtual image breaks a record: 50-nm resolution imaging is demonstrated
We demonstrate a new 'microsphere nanoscope' that uses ordinary SiO2
microspheres as superlenses to create a virtual image of the object in near
field. The magnified virtual image greatly overcomes the diffraction limit. We
are able to resolve clearly 50-nm objects under a standard white light source
in both transmission and reflection modes. The resolution achieved for white
light opens a new opportunity to image viruses, DNA and molecules in real time
Quantum critical lines in holographic phases with (un)broken symmetry
All possible scaling IR asymptotics in homogeneous, translation invariant
holographic phases preserving or breaking a U(1) symmetry in the IR are
classified. Scale invariant geometries where the scalar extremizes its
effective potential are distinguished from hyperscaling violating geometries
where the scalar runs logarithmically. It is shown that the general critical
saddle-point solutions are characterized by three critical exponents (). Both exact solutions as well as leading behaviors are exhibited.
Using them, neutral or charged geometries realizing both fractionalized or
cohesive phases are found. The generic global IR picture emerging is that of
quantum critical lines, separated by quantum critical points which correspond
to the scale invariant solutions with a constant scalar.Comment: v3: 32+29 pages, 2 figures. Matches version published in JHEP.
Important addition of an exponent characterizing the IR scaling of the
electric potentia
Macroscopic transport by synthetic molecular machines
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with—and perform physical tasks in—the macroscopic world represents a significant hurdle for molecular nanotechnology. Here we describe a wholly synthetic molecular system that converts an external energy source (light) into biased brownian motion to transport a macroscopic cargo and do measurable work. The millimetre-scale directional transport of a liquid on a surface is achieved by using the biased brownian motion of stimuli-responsive rotaxanes (‘molecular shuttles’) to expose or conceal fluoroalkane residues and thereby modify surface tension. The collective operation of a monolayer of the molecular shuttles is sufficient to power the movement of a microlitre droplet of diiodomethane up a twelve-degree incline.
Online Dominating Set
This paper is devoted to the online dominating set problem and its variants.
We believe the paper represents the first systematic study of the effect of two
limitations of online algorithms: making irrevocable decisions while not
knowing the future, and being incremental, i.e., having to maintain solutions
to all prefixes of the input. This is quantified through competitive analyses
of online algorithms against two optimal algorithms, both knowing the entire
input, but only one having to be incremental. We also consider the competitive
ratio of the weaker of the two optimal algorithms against the other.
We consider important graph classes, distinguishing between connected and not
necessarily connected graphs. For the classic graph classes of trees,
bipartite, planar, and general graphs, we obtain tight results in almost all
cases. We also derive upper and lower bounds for the class of bounded-degree
graphs. From these analyses, we get detailed information regarding the
significance of the necessary requirement that online algorithms be
incremental. In some cases, having to be incremental fully accounts for the
online algorithm's disadvantage.Comment: IMADA-preprint-c
Controlling light-with-light without nonlinearity
According to Huygens' superposition principle, light beams traveling in a
linear medium will pass though one another without mutual disturbance. Indeed,
it is widely held that controlling light signals with light requires intense
laser fields to facilitate beam interactions in nonlinear media, where the
superposition principle can be broken. We demonstrate here that two coherent
beams of light of arbitrarily low intensity can interact on a metamaterial
layer of nanoscale thickness in such a way that one beam modulates the
intensity of the other. We show that the interference of beams can eliminate
the plasmonic Joule losses of light energy in the metamaterial or, in contrast,
can lead to almost total absorbtion of light. Applications of this phenomenon
may lie in ultrafast all-optical pulse-recovery devices, coherence filters and
THz-bandwidth light-by-light modulators
Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons
Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated.
Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope.
Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes.
Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neuron
Stability Analysis of Frame Slotted Aloha Protocol
Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency
Identification (RFID) systems as the de facto standard in tag identification.
However, very limited work has been done on the stability of FSA despite its
fundamental importance both on the theoretical characterisation of FSA
performance and its effective operation in practical systems. In order to
bridge this gap, we devote this paper to investigating the stability properties
of FSA by focusing on two physical layer models of practical importance, the
models with single packet reception and multipacket reception capabilities.
Technically, we model the FSA system backlog as a Markov chain with its states
being backlog size at the beginning of each frame. The objective is to analyze
the ergodicity of the Markov chain and demonstrate its properties in different
regions, particularly the instability region. By employing drift analysis, we
obtain the closed-form conditions for the stability of FSA and show that the
stability region is maximised when the frame length equals the backlog size in
the single packet reception model and when the ratio of the backlog size to
frame length equals in order of magnitude the maximum multipacket reception
capacity in the multipacket reception model. Furthermore, to characterise
system behavior in the instability region, we mathematically demonstrate the
existence of transience of the backlog Markov chain.Comment: 14 pages, submitted to IEEE Transaction on Information Theor
Schr\"odinger Holography with and without Hyperscaling Violation
We study the properties of the Schr\"odinger-type non-relativistic holography
for general dynamical exponent z with and without hyperscaling violation
exponent \theta. The scalar correlation function has a more general form due to
general z as well as the presence of \theta, whose effects also modify the
scaling dimension of the scalar operator. We propose a prescription for minimal
surfaces of this "codimension 2 holography," and demonstrate the (d-1)
dimensional area law for the entanglement entropy from (d+3) dimensional
Schr\"odinger backgrounds. Surprisingly, the area law is violated for d+1 < z <
d+2, even without hyperscaling violation, which interpolates between the
logarithmic violation and extensive volume dependence of entanglement entropy.
Similar violations are also found in the presence of the hyperscaling
violation. Their dual field theories are expected to have novel phases for the
parameter range, including Fermi surface. We also analyze string theory
embeddings using non-relativistic branes.Comment: 62 pages and 6 figures, v2: several typos in section 5 corrected,
references added, v3: typos corrected, references added, published versio
- …
