8,277 research outputs found
How can non-technical end users effectively test their spreadsheets?
Purpose – An alarming number of spreadsheet faults have been reported in the literature, indicating that effective and easy-to-apply spreadsheet testing techniques are not available for “non-technical,” end-user programmers. The purpose of this paper is to alleviate the problem by introducing a metamorphic testing (MT) technique for spreadsheets. Design/methodology/approach – The paper discussed four common challenges encountered by end-user programmers when testing a spreadsheet. The MT technique was then discussed and how it could be used to solve the common challenges was explained. An experiment involving several “real-world” spreadsheets was performed to determine the viability and effectiveness of MT. Findings – The experiment confirmed that MT is highly effective in spreadsheet fault detection, and yet MT is a general technique that can be easily used by end-user programmers to test a large variety of spreadsheet applications. Originality/value – The paper provides a detailed discussion of some common challenges of spreadsheet testing encountered by end-user programmers. To the best of the authors knowledge, the paper is the first that includes an empirical study of how effective MT is in spreadsheet fault detection from an end-user programmer's perspective
Code coverage of adaptive random testing
Random testing is a basic software testing technique that can be used to assess the software reliability as well as to detect software failures. Adaptive random testing has been proposed to enhance the failure-detection capability of random testing. Previous studies have shown that adaptive random testing can use fewer test cases than random testing to detect the first software failure. In this paper, we evaluate and compare the performance of adaptive random testing and random testing from another perspective, that of code coverage. As shown in various investigations, a higher code coverage not only brings a higher failure-detection capability, but also improves the effectiveness of software reliability estimation. We conduct a series of experiments based on two categories of code coverage criteria: structure-based coverage, and fault-based coverage. Adaptive random testing can achieve higher code coverage than random testing with the same number of test cases. Our experimental results imply that, in addition to having a better failure-detection capability than random testing, adaptive random testing also delivers a higher effectiveness in assessing software reliability, and a higher confidence in the reliability of the software under test even when no failure is detected
How effectively does metamorphic testing alleviate the oracle problem?
In software testing, something which can verify the correctness of test case execution results is called an oracle. The oracle problem occurs when either an oracle does not exist, or exists but is too expensive to be used. Metamorphic testing is a testing approach which uses metamorphic relations, properties of the software under test represented in the form of relations among inputs and outputs of multiple executions, to help verify the correctness of a program. This paper presents new empirical evidence to support this approach, which has been used to alleviate the oracle problem in various applications and to enhance several software analysis and testing techniques. It has been observed that identification of a sufficient number of appropriate metamorphic relations for testing, even by inexperienced testers, was possible with a very small amount of training. Furthermore, the cost-effectiveness of the approach could be enhanced through the use of more diverse metamorphic relations. The empirical studies presented in this paper clearly show that a small number of diverse metamorphic relations, even those identified in an ad hoc manner, had a similar fault-detection capability to a test oracle, and could thus effectively help alleviate the oracle problem
Acupuncture Treatment of Lateral Elbow Pain: A Nonrandomized Pilot Study
© 2016 Yan-Song Liu et al. In planning for a large-scale multicenter trial to evaluate the effect of acupuncture for the treatment of lateral elbow pain, a pilot study was conducted. This was a prospective, investigator- and patient-blinded, nonrandomized, placebo controlled trial. Subjects were evaluated at baseline, before fourth, seventh, and ninth treatment, and at a two-week posttreatment follow-up. The treatment group received unilateral acupuncture at LI 10 and LI 11 at the affected side with manual needle manipulation; the control group received sham-laser acupuncture at the same acupoints. Measures included (i) disabilities of the arm, shoulder, and hand (DASH) questionnaire, (ii) pain-free grip strength (PFGS), and (iii) a visual analogue scale (VAS) for pain. Significant differences in DASH score, PFGS, and VAS between treatment and control group were found at the ninth treatment (n = 20 for each group, P < 0.05). Only DASH showed significant differences compared to the control for all the measurement time points after treatment commenced and appears to be a sensitive and appropriate primary outcome measure for the future multisite trial. Results from this pilot study provided relevant information about treatment efficacy, credibility of control treatment, and sensitivity of different outcome measures for the planning of the future trial
What limits supercurrents in high temperature superconductors? A microscopic model of cuprate grain boundaries
The interface properties of high-temperature cuprate superconductors have
been of interest for many years, and play an essential role in Josephson
junctions, superconducting cables, and microwave electronics. In particular,
the maximum critical current achievable in high-Tc wires and tapes is well
known to be limited by the presence of grain boundaries, regions of mismatch
between crystallites with misoriented crystalline axes. In studies of single,
artificially fabricated grain boundaries the striking observation has been made
that the critical current Jc of a grain boundary junction depends exponentially
on the misorientation angle. Until now microscopic understanding of this
apparently universal behavior has been lacking. We present here the results of
a microscopic evaluation based on a construction of fully 3D YBCO grain
boundaries by molecular dynamics. With these structures, we calculate an
effective tight-binding Hamiltonian for the d-wave superconductor with a grain
boundary. The critical current is then shown to follow an exponential
suppression with grain boundary angle. We identify the buildup of charge
inhomogeneities as the dominant mechanism for the suppression of the
supercurrent.Comment: 28 pages, 12 figure
Recommended from our members
Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe<inf>x</inf>Co<inf>1-x</inf>PO<inf>4</inf>
The delithiation mechanisms occurring within the olivine-type class of cathode materials for Li-ion batteries have received considerable attention owing to the good capacity retention at high rates for LiFePO4. A comprehensive mechanistic study of the (de)lithiation reactions that occur when the substituted olivine-type cathode materials LiFexCo1-xPO4 (x = 0, 0.05, 0.125, 0.25, 0.5, 0.75, 0.875, 0.95 and 1) are electrochemically cycled is reported here, using in situ X-ray diffraction (XRD) data, and supporting ex situ 31P NMR spectra. On the first charge, two intermediate phases are observed and identified: Li1-x(Fe3+)x(Co2+)1-xPO4 for 0 Fe3+) and Li2/3FexCo1-xPO4 for 0 ≤ x ≤ 0.5 (i.e. the Co-majority materials). For the Fe-rich materials, we study how nonequilibrium, single-phase mechanisms that occur discretely in single particles, as observed for LiFePO4 at high rates, are affected by Co substitution. In the Co-majority materials, a two-phase mechanism with a coherent interface is observed, as was seen in LiCoPO4, and we discuss how it is manifested in the XRD patterns. We then compare the nonequilibrium, single-phase mechanism with the bulk single-phase and the coherent interface two-phase mechanisms. Despite the apparent differences between these mechanisms, we discuss how they are related and interconverted as a function of Fe/Co substitution and the potential implications for the electrochemistry of this system.This is the final version of the article. It first appeared from The American Chemical Society via https://doi.org/10.1021/acs.chemmater.6b0031
Interleukin-1ß mRNA expression in ischemic rat cortex
Background and Pur pose: Interleukin-1ß is a proinftammatory cytokine produced by blood-borne and resident brain inftammatory cells. The present study was conducted to determine if interleukin-1ß mRNA was produced in the brain of rats subjected to permanent focal ischemia. Methods: Rat interleukin-1ß cDNA, synthesized from stimulated rat peritoneal macrophage RNA by reverse transcription and polymerase chain reaction and c10ned in plasmid Bluescript KS+, was used to evaluate the expression of interleukin-1ß mRNA in cerebral cortex from spontaneously hypertensive rats and normotensive rats subjected to permanent middle cerebral artery occlusion. Interleukin-1ß mRNA was quantified by Northern blot analysis and compared with rat macrophage RNA standard. To correct for gel loading, blots were also analyzed with cyclophilin cDNA, which encodes an abundant, conserved protein that was unchanged by the experimental conditions. Results: Interleukin-1ß mRNA produced in the ischemic zone was significantly increased from 6 hours to 120 hours, with a maximum of211±24% ofinterleukin-1ß reference standard, ie, 0.2 ng stimulated rat macrophage RNA, mRNA compared with the level in nonischemic cortices (4±2%) at 12 hours after ischemia (P<.OI; n=6). Interleukin-1ß mRNA at 12 hours after ischemia was markedly elevated in hypertensive rats over levels found in two normotensive rat strains. Neurological deficits were also apparent only in the hypertensive rats. Conclusions: Brain interleukin-1ß mRNA is elevated acutely after permanent focal ischemia and especially in hypertensive rats. These data suggest that this potent proinflammatory and procoagulant cytokine might have a role in brain damage following ischemia
Immunotherapeutic targeting of membrane Hsp70-expressing tumors using recombinant human granzyme B
Background: We have previously reported that human recombinant granzyme B (grB) mediates apoptosis in membrane heat shock protein 70 (Hsp70)-positive tumor cells in a perforin-independent manner
TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.
The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas
Thermodynamical Consistent Modeling and Analysis of Nematic Liquid Crystal Flows
The general Ericksen-Leslie system for the flow of nematic liquid crystals is
reconsidered in the non-isothermal case aiming for thermodynamically consistent
models. The non-isothermal model is then investigated analytically. A fairly
complete dynamic theory is developed by analyzing these systems as quasilinear
parabolic evolution equations in an -setting. First, the existence of
a unique, local strong solution is proved. It is then shown that this solution
extends to a global strong solution provided the initial data are close to an
equilibrium or the solution is eventually bounded in the natural norm of the
underlying state space. In these cases, the solution converges exponentially to
an equilibrium in the natural state manifold
- …
