249,607 research outputs found

    An advanced meshless method for time fractional diffusion equation

    Get PDF
    Recently, because of the new developments in sustainable engineering and renewable energy, which are usually governed by a series of fractional partial differential equations (FPDEs), the numerical modelling and simulation for fractional calculus are attracting more and more attention from researchers. The current dominant numerical method for modeling FPDE is Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings including difficulty in simulation of problems with the complex problem domain and in using irregularly distributed nodes. Because of its distinguished advantages, the meshless method has good potential in simulation of FPDEs. This paper aims to develop an implicit meshless collocation technique for FPDE. The discrete system of FPDEs is obtained by using the meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of fractional partial differential equations

    Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland

    Get PDF
    Evapotranspiration (ET) from the wetland of the Yellow River Delta (YRD) is one of the important components in the water cycle, which represents the water consumption by the plants and evaporation from the water and the non-vegetated surfaces. Reliable estimates of the total evapotranspiration from the wetland is useful information both for understanding the hydrological process and for water management to protect this natural environment. Due to the heterogeneity of the vegetation types and canopy density and of soil water content over the wetland (specifically over the natural reserve areas), it is difficult to estimate the regional evapotranspiration extrapolating measurements or calculations usually done locally for a specific land cover type. Remote sensing can provide observations of land surface conditions with high spatial and temporal resolution and coverage. In this study, a model based on the Energy Balance method was used to calculate daily evapotranspiration (ET) using instantaneous observations of land surface reflectance and temperature from MODIS when the data were available on clouds-free days. A time series analysis algorithm was then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series due to clouds. A detailed vegetation classification map was used to help identifying areas of various wetland vegetation types in the YRD wetland. Such information was also used to improve the parameterizations in the energy balance model to improve the accuracy of ET estimates. This study showed that spatial variation of ET was significant over the same vegetation class at a given time and over different vegetation types in different seasons in the YRD wetlan

    Phase Diffusion in Single-Walled Carbon Nanotube Josephson Transistors

    Get PDF
    We investigate electronic transport in Josephson junctions formed by single-walled carbon nanotubes coupled to superconducting electrodes. We observe enhanced zero-bias conductance (up to 10e^2/h) and pronounced sub-harmonic gap structures in differential conductance, which arise from the multiple Andreev reflections at superconductor/nanotube interfaces. The voltage-current characteristics of these junctions display abrupt switching from the supercurrent branch to resistive branch, with a gate-tunable switching current ranging from 50 pA to 2.3 nA. The finite resistance observed on the supercurrent branch and the magnitude of the switching current are in good agreement with calculation based on the model of classical phase diffusion

    Wideband wattmeter for instant measurement of real power

    Get PDF
    Portable, solid state wattmeter with wideband (dc to 1 MHz) linear multiplier which provides true four quadrant operation permitting instantaneous indication of real power as oscilloscope display is described

    Lattice Gluon Propagator in the Landau Gauge: A Study Using Anisotropic Lattices

    Full text link
    Lattice gluon propagators are studied using tadpole and Symanzik improved gauge action in Landau gauge. The study is performed using anisotropic lattices with asymmetric volumes. The Landau gauge dressing function for the gluon propagator measured on the lattice is fitted according to a leading power behavior: Z(q2)(q2)2κZ(q^2)\simeq (q^2)^{2\kappa} with an exponent κ\kappa at small momenta. The gluon propagators are also fitted using other models and the results are compared. Our result is compatible with a finite gluon propagator at zero momentum in Landau gauge.Comment: 14 pages, 4 figure

    Morphology, structure, optical, and electrical properties of AgSbO₃

    Get PDF
    The morphology of defect pyrochlore-type, AgSbO₃ microparticle/nanoparticles obtained via solid state reaction evolve from irregular to Fullerene-like polyhedra before finally decomposing into metal-organic framework-5 like particles with increase in sintering temperature. The defect pyrochlore-type AgSbO₃ particles are slightly Ag deficient while the valence of the antimony ion is shown to be +5 giving rise to a probable stoichiometry of Ag₁ˍₓ SbVO₃ˍₓ/₂, with x∼0.01–0.04. A highly structured diffuse intensity distribution observed via electron diffraction is interpreted in terms of correlated displacements of one-dimensional (1D) silver ion chains along ⟨110⟩ directions. A redshifting in the absorption edges in UV-visible absorption spectra is observed for samples prepared at sintering temperatures higher than 1000 °C and attributed to the surface plasma resonance effect associated with small amounts of excess metallic Ag on the Ag₁ˍₓ SbVO₃ˍₓ/₂ particles. An electrical properties investigation of the silver antimonate samples via dielectric, conductivity, and electric modulus spectroscopy shows a prominent dielectric relaxation associated with grain boundaries. The silver ion conductivity is associated with correlated displacements of 1D silver ion chains along ⟨110⟩ directions.Z.G.Y., Y.L., and R.L.W. acknowledge financial support from the Australian Research Council ARC in the form of ARC Discovery Grants

    Crossover of magnetoresistance in the zerogap half-metallic Heusler alloy Fe2CoSi

    Full text link
    This work reports on the band structure and magneto-transport investigations of the inverse Heusler compound Fe2CoSi. The first-principles calculations reveal that Fe2CoSi has a very peculiar band structure with a conducting property in the majority spin channel and a nearly zero bandgap in the minority spin channel. The synthesized Fe2CoSi sample shows a high-ordered inverse Heusler structure with a magnetic moment of 4.88 {\mu}B at 5 K and a high Curie temperature of 1038 K. With increasing temperature, a crossover from positive to negative magnetoresistance (MR) is observed. Complemented with the Hall effect measurements, we suggest the intriguing crossover of MR can be ascribed to the dominant spin carriers changing from the gapless minority spin channel to the majority spin channel at Fermi level.Comment: 16 pages, 5 figures, submitted for publicatio

    Quantum-limited metrology in the presence of collisional dephasing

    Full text link
    Including collisional decoherence explicitly, phase sensitivity for estimating effective scattering strength χ\chi of a two-component Bose-Einstein condensate is derived analytically. With a measurement of spin operator J^x\hat{J}_{x}, we find that the optimal sensitivity depends on initial coherent spin state. It degrades by a factor of (2γ)1/3(2\gamma)^{1/3} below super-Heisenberg limit 1/N3/2\propto 1/N^{3/2} for particle number NN and the dephasing rate 1< ⁣<γ<N3/41<\!<\gamma<N^{3/4}. With a J^y\hat{J}_y measurement, our analytical results confirm that the phase ϕ=χt0\phi=\chi t\sim 0 can be detected at the limit even in the presence of the dephasing.Comment: 3.2 pages, 3 figure
    corecore