7,432 research outputs found
Distributed classifier migration in XCS for classification of electroencephalographic signals
This paper presents an investigation into combining migration strategies inspired by multi-deme Parallel Genetic Algorithms with the XCS Learning Classifier System to provide parallel and distributed classifier migration. Migrations occur between distributed XCS classifier sub-populations using classifiers ranked according to numerosity, fitness or randomly selected. The influence of the degree-of-connectivity introduced by Fully-Connected, Bi-directional Ring and Uni-directional Ring topologies is examined. Results indicate that classifier migration is an effective method for improving classification accuracy, improving learning speed and reducing final classifier population size, in the single-step classification of noisy, artefact-inclusive human electroencephalographic signals. The experimental results will be used as part of our larger research effort investigating the feasibility of using EEG signals as an interface to allow paralysed persons to control a powered wheelchair or other devices. © 2007 IEEE
A dual-memory permanent magnet brushless machine for automotive integrated starter-generator application
This paper presents a dual-memory permanent magnet brushless machine for automotive integrated starter-generator (ISG) application. The key is that the proposed machine adopts two kinds of PM materials, namely NdFeB and AlNiCo for hybrid excitations. Due to the non-linear characteristic of demagnetization curve, AlNiCo can be regulated to operate at different magnetization levels via a magnetizing winding. With this distinct merit, AlNiCo can provide the assistance for online tuning the air-gap flux density. Firstly, the configuration of proposed machine is presented. Secondly, the finite element method (FEM) is applied for the field calculation and performance verification. Finally, both simulation and experimental results confirm that the proposed machine is very suitable for the ISG application. © 2012 IEEE.published_or_final_versio
An efficient offshore wind-wave hybrid generation system using direct-drive multitoothed rotating and linear machines
This paper presents an offshore wind-wave hybrid generation (WWHG) system, which can efficiently harness the offshore wind and wave energy. The key is to use the multitoothed doubly-salient permanent-magnet (MDSPM) machines for serving the rotating generator and the linear generator. Different from the traditional wind or wave generation system, this WWHG system integrates the wind generation part and wave generation part together to directly harness the wind and wave energy without gear box. The system configuration and machine design are analyzed and discussed in detail. Also, the finite-element method is performed to verify the validity of the proposed two machine design. The results tell that the system has the high reliability and can be upgraded to the suitable size for offshore hybrid-source energy conversion in practical application. © 2014 IEEE.published_or_final_versio
Distributed simultaneous task allocation and motion coordination of autonomous vehicles using a parallel computing cluster
Task allocation and motion coordination are the main factors that should be consi-dered in the coordination of multiple autonomous vehicles in material handling systems. Presently, these factors are handled in different stages, leading to a reduction in optimality and efficiency of the overall coordination. However, if these issues are solved simultaneously we can gain near optimal results. But, the simultaneous approach contains additional algorithmic complexities which increase computation time in the simulation environment. This work aims to reduce the computation time by adopting a parallel and distributed computation strategy for Simultaneous Task Allocation and Motion Coordination (STAMC). In the simulation experiments, each cluster node executes the motion coordination algorithm for each autonomous vehicle. This arrangement enables parallel computation of the expensive STAMC algorithm. Parallel and distributed computation is performed directly within the interpretive MATLAB environment. Results show the parallel and distributed approach provides sub-linear speedup compared to a single centralised computing node. © 2007 Springer-Verlag Berlin Heidelberg
The enhancement of TiO?photocatalytic activity by hydrogen thermal treatment
Author name used in this publication: H. LiuAuthor name used in this publication: X. Z. Li2002-2003 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe
PAK4 phosphorylates p53 at serine 215 to promote liver cancer metastasis
PAK4 kinase contributes to signaling pathways controlling cancer cell transformation, invasion and survival, but its clinicopathological impact has begun to emerge only recently. Here we report that PAK4 overexpression in hepatocellular carcinoma (HCC) conveys aggressive metastatic properties. A novel nuclear splice isoform of PAK4 lacking exon 2 sequences was isolated as part of our studies. By stably overexpressing or silencing PAK4 in HCC cells we showed that it was critical for their migration. Mechanistic investigations in this setting revealed that PAK4 directly phosphorylated p53 at S215, which not only attenuated transcriptional transactivation activity but also inhibited p53-mediated suppression of HCC cell invasion. Taken together, our results showed how PAK4 overexpression in HCC promotes metastatic invasion by regulating p53 phosphorylation.postprin
A new magnetless flux-reversal HTS machine for direct-drive application
published_or_final_versio
Excitation Spectra And Hard-core Thermodynamics Of Bosonic Atoms In Optical Superlattices
A generalized double-well-basis coupled representation is proposed to investigate excitation spectra and thermodynamics of bosonic atoms in double-well optical superlattices. In the hard-core limit and with a filling factor of one, excitations describing the creation of pairs of a doubly occupied state and a simultaneous empty state, and those from a symmetric singly occupied state to an antisymmetric state are carefully analyzed and their excitation spectra are calculated within mean-field theory. Based on the hard-core statistics, the equilibrium properties such as heat capacity and particle populations are studied in detail. The cases with other filling factors are also briefly discussed.published_or_final_versio
Melt conditioning by advanced shear technology (MCAST) for refining solidification microstructures
MCAST (melt conditioning by advanced shear technology) is a novel processing technology developed recently by BCAST at Brunel University for conditioning liquid metal prior to solidification processing. The MCAST process uses a twin screw mechanism to impose a high shear rate and a high intensity of turbulence to the liquid metal, so that the conditioned liquid metal has uniform temperature, uniform chemical composition and well-dispersed and completely wetted oxide particles with a fine size and a narrow size distribution. The microstructural refinement is achieved through an enhanced heterogeneous nucleation rate and an increased nuclei survival rate during the subsequent solidification processing. In this paper we present the MCAST process and its applications for microstructural refinement in both shape casting and continuous casting of light alloys
- …
