3,367 research outputs found
Monitoring of particulate matter concentrations at high altitude ecosystems of Pakistan and China
Particulate matter exhibits different behavior with altitude. A comparative analysis was carried out to monitor PM1, PM2.5, PM4, PM10 and PMTotal at elevations above 3000 m in both China and Pakistan. Real time monitoring of PM was carried out at both sites using a DustTrak DRX (model 8533, TSI Inc.) for 24 hours each. In Pakistan, the average value of PMTotal was 415 ± 16 μg/m3 while in China the value was considerably lower i.e. 110 ± 57 μg/m3. The 24-hour mean values recorded were well above the WHO recommended limit of 25 μg/m3. These results indicate that, even at sites some distance from anthropogenic sources, PM concentrations still pose a health risk
A transient homotypic interaction model for the influenza A virus NS1 protein effector domain
Influenza A virus NS1 protein is a multifunctional virulence factor consisting of an RNA binding domain (RBD), a short linker, an effector domain (ED), and a C-terminal 'tail'. Although poorly understood, NS1 multimerization may autoregulate its actions. While RBD dimerization seems functionally conserved, two possible apo ED dimers have been proposed (helix-helix and strand-strand). Here, we analyze all available RBD, ED, and full-length NS1 structures, including four novel crystal structures obtained using EDs from divergent human and avian viruses, as well as two forms of a monomeric ED mutant. The data reveal the helix-helix interface as the only strictly conserved ED homodimeric contact. Furthermore, a mutant NS1 unable to form the helix-helix dimer is compromised in its ability to bind dsRNA efficiently, implying that ED multimerization influences RBD activity. Our bioinformatical work also suggests that the helix-helix interface is variable and transient, thereby allowing two ED monomers to twist relative to one another and possibly separate. In this regard, we found a mAb that recognizes NS1 via a residue completely buried within the ED helix-helix interface, and which may help highlight potential different conformational populations of NS1 (putatively termed 'helix-closed' and 'helix-open') in virus-infected cells. 'Helix-closed' conformations appear to enhance dsRNA binding, and 'helix-open' conformations allow otherwise inaccessible interactions with host factors. Our data support a new model of NS1 regulation in which the RBD remains dimeric throughout infection, while the ED switches between several quaternary states in order to expand its functional space. Such a concept may be applicable to other small multifunctional proteins
A Rapid Assessment of the Quality of Neonatal Healthcare in Kilimanjaro Region, Northeast Tanzania.
While child mortality is declining in Africa there has been no evidence of a comparable reduction in neonatal mortality. The quality of inpatient neonatal care is likely a contributing factor but data from resource limited settings are few. The objective of this study was to assess the quality of neonatal care in the district hospitals of the Kilimanjaro region of Tanzania. Clinical records were reviewed for ill or premature neonates admitted to 13 inpatient health facilities in the Kilimanjaro region; staffing and equipment levels were also assessed. Among the 82 neonates reviewed, key health information was missing from a substantial proportion of records: on maternal antenatal cards, blood group was recorded for 52 (63.4%) mothers, Rhesus (Rh) factor for 39 (47.6%), VDRL for 59 (71.9%) and HIV status for 77 (93.1%). From neonatal clinical records, heart rate was recorded for3 (3.7%) neonates, respiratory rate in 14, (17.1%) and temperature in 33 (40.2%). None of 13 facilities had a functioning premature unit despite calculated gestational age <36 weeks in 45.6% of evaluated neonates. Intravenous fluids and oxygen were available in 9 out of 13 of facilities, while antibiotics and essential basic equipment were available in more than two thirds. Medication dosing errors were common; under-dosage for ampicillin, gentamicin and cloxacillin was found in 44.0%, 37.9% and 50% of cases, respectively, while over-dosage was found in 20.0%, 24.2% and 19.9%, respectively. Physician or assistant physician staffing levels by the WHO indicator levels (WISN) were generally low. Key aspects of neonatal care were found to be poorly documented or incorrectly implemented in this appraisal of neonatal care in Kilimanjaro. Efforts towards quality assurance and enhanced motivation of staff may improve outcomes for this vulnerable group
Clinical Implication of Targeting of Cancer Stem Cells
The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
Electronic Origin of High Temperature Superconductivity in Single-Layer FeSe Superconductor
The latest discovery of high temperature superconductivity signature in
single-layer FeSe is significant because it is possible to break the
superconducting critical temperature ceiling (maximum Tc~55 K) that has been
stagnant since the discovery of Fe-based superconductivity in 2008. It also
blows the superconductivity community by surprise because such a high Tc is
unexpected in FeSe system with the bulk FeSe exhibiting a Tc at only 8 K at
ambient pressure which can be enhanced to 38 K under high pressure. The Tc is
still unusually high even considering the newly-discovered intercalated FeSe
system A_xFe_{2-y}Se_2 (A=K, Cs, Rb and Tl) with a Tc at 32 K at ambient
pressure and possible Tc near 48 K under high pressure. Particularly
interesting is that such a high temperature superconductivity occurs in a
single-layer FeSe system that is considered as a key building block of the
Fe-based superconductors. Understanding the origin of high temperature
superconductivity in such a strictly two-dimensional FeSe system is crucial to
understanding the superconductivity mechanism in Fe-based superconductors in
particular, and providing key insights on how to achieve high temperature
superconductivity in general. Here we report distinct electronic structure
associated with the single-layer FeSe superconductor. Its Fermi surface
topology is different from other Fe-based superconductors; it consists only of
electron pockets near the zone corner without indication of any Fermi surface
around the zone center. Our observation of large and nearly isotropic
superconducting gap in this strictly two-dimensional system rules out existence
of node in the superconducting gap. These results have provided an unambiguous
case that such a unique electronic structure is favorable for realizing high
temperature superconductivity
Ultrasensitive force detection with a nanotube mechanical resonator
Since the advent of atomic force microscopy, mechanical resonators have been
used to study a wide variety of phenomena, such as the dynamics of individual
electron spins, persistent currents in normal metal rings, and the Casimir
force. Key to these experiments is the ability to measure weak forces. Here, we
report on force sensing experiments with a sensitivity of 12 zN Hz^(-1/2) at a
temperature of 1.2 K using a resonator made of a carbon nanotube. An
ultra-sensitive method based on cross-correlated electrical noise measurements,
in combination with parametric downconversion, is used to detect the
low-amplitude vibrations of the nanotube induced by weak forces. The force
sensitivity is quantified by applying a known capacitive force. This detection
method also allows us to measure the Brownian vibrations of the nanotube down
to cryogenic temperatures. Force sensing with nanotube resonators offers new
opportunities for detecting and manipulating individual nuclear spins as well
as for magnetometry measurements.Comment: Early version. To be published in Nature Nanotechnolog
Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer
Pancreatic cancer (PC) mobilizes myeloid cells from the bone marrow to the tumor where they promote tumor growth and proliferation. Cancer stem cells (CSCs) are a population of tumor cells that are responsible for tumor initiation. Aldehyde dehydrogenase-1 activity in PC identifies CSCs, and its activity has been correlated with poor overall prognosis in human PC. Myeloid cells have been shown to impact tumor stemness, but the impact of immunosuppressive tumor-infiltrating granulocytic and monocytic myeloid-derived suppressor cells (Mo-MDSC) on ALDH1(Bright) CSCs and epithelial to mesenchymal transition is not well understood. In this study, we demonstrate that Mo-MDSC (CD11b(+)/Gr1(+)/Ly6G(−)/Ly6C(hi)) significantly increase the frequency of ALDH1(Bright) CSCs in a mouse model of PC. Additionally, there was significant upregulation of genes associated with epithelial to mesenchymal transition. We also found that human PC converts CD14(+) peripheral blood monocytes into Mo-MDSC (CD14(+)/HLA-DR(low/−)) in vitro, and this transformation is dependent on the activation of the STAT3 pathway. In turn, these Mo-MDSC increase the frequency of ALDH1(Bright) CSCs and promote mesenchymal features of tumor cells. Finally, blockade of STAT3 activation reversed the increase in ALDH1(Bright) CSCs. These data suggest that the PC tumor microenvironment transforms monocytes to Mo-MDSC by STAT3 activation, and these cells increase the frequency of ALDH1(Bright) CSCs. Therefore, targeting STAT3 activation may be an effective therapeutic strategy in targeting CSCs in PC. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00262-014-1527-x) contains supplementary material, which is available to authorized users
High magnetic field scales and critical currents in SmFeAs(O,F) crystals: promising for applications
Superconducting technology provides most sensitive field detectors, promising
implementations of qubits and high field magnets for medical imaging and for
most powerful particle accelerators. Thus, with the discovery of new
superconducting materials, such as the iron pnictides, exploring their
potential for applications is one of the foremost tasks. Even if the critical
temperature Tc is high, intrinsic electronic properties might render
applications rather difficult, particularly if extreme electronic anisotropy
prevents effective pinning of vortices and thus severely limits the critical
current density, a problem well known for cuprates. While many questions
concerning microscopic electronic properties of the iron pnictides have been
successfully addressed and estimates point to a very high upper critical field,
their application potential is less clarified. Thus we focus here on the
critical currents, their anisotropy and the onset of electrical dissipation in
high magnetic fields up to 65 T. Our detailed study of the transport properties
of optimally doped SmFeAs(O,F) single crystals reveals a promising combination
of high (>2 x 10^6 A/cm^2) and nearly isotropic critical current densities
along all crystal directions. This favorable intragrain current transport in
SmFeAs(O,F), which shows the highest Tc of 54 K at ambient pressure, is a
crucial requirement for possible applications. Essential in these experiments
are 4-probe measurements on Focused Ion Beam (FIB) cut single crystals with
sub-\mu\m^2 cross-section, with current along and perpendicular to the
crystallographic c-axis and very good signal-to-noise ratio (SNR) in pulsed
magnetic fields. The pinning forces have been characterized by scaling the
magnetically measured "peak effect"
- …
