1,510 research outputs found

    A nonmonotone GRASP

    Get PDF
    A greedy randomized adaptive search procedure (GRASP) is an itera- tive multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the con- struction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solu- tion. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut prob- lem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP)

    Hybridization of multi-objective deterministic particle swarm with derivative-free local searches

    Get PDF
    The paper presents a multi-objective derivative-free and deterministic global/local hybrid algorithm for the efficient and effective solution of simulation-based design optimization (SBDO) problems. The objective is to show how the hybridization of two multi-objective derivative-free global and local algorithms achieves better performance than the separate use of the two algorithms in solving specific SBDO problems for hull-form design. The proposed method belongs to the class of memetic algorithms, where the global exploration capability of multi-objective deterministic particle swarm optimization is enriched by exploiting the local search accuracy of a derivative-free multi-objective line-search method. To the authors best knowledge, studies are still limited on memetic, multi-objective, deterministic, derivative-free, and evolutionary algorithms for an effective and efficient solution of SBDO for hull-form design. The proposed formulation manages global and local searches based on the hypervolume metric. The hybridization scheme uses two parameters to control the local search activation and the number of function calls used by the local algorithm. The most promising values of these parameters were identified using forty analytical tests representative of the SBDO problem of interest. The resulting hybrid algorithm was finally applied to two SBDO problems for hull-form design. For both analytical tests and SBDO problems, the hybrid method achieves better performance than its global and local counterparts

    A comparative study of Gaussian Graphical Model approaches for genomic data

    Get PDF
    The inference of networks of dependencies by Gaussian Graphical models on high-throughput data is an open issue in modern molecular biology. In this paper we provide a comparative study of three methods to obtain small sample and high dimension estimates of partial correlation coefficients: the Moore-Penrose pseudoinverse (PINV), residual correlation (RCM) and covariance-regularized method (2C)(\ell_{2C}). We first compare them on simulated datasets and we find that PINV is less stable in terms of AUC performance when the number of variables changes. The two regularized methods have comparable performances but 2C\ell_{2C} is much faster than RCM. Finally, we present the results of an application of 2C\ell_{2C} for the inference of a gene network for isoprenoid biosynthesis pathways in Arabidopsis thaliana.Comment: 7 pages, 1 figure, RevTex4, version to appear in the proceedings of 1st International Workshop on Pattern Recognition, Proteomics, Structural Biology and Bioinformatics: PR PS BB 2011, Ravenna, Italy, 13 September 201

    A multi-objective DIRECT algorithm for ship hull optimization

    Get PDF
    The paper is concerned with black-box nonlinear constrained multi-objective optimization problems. Our interest is the definition of a multi-objective deterministic partition-based algorithm. The main target of the proposed algorithm is the solution of a real ship hull optimization problem. To this purpose and in pursuit of an efficient method, we develop an hybrid algorithm by coupling a multi-objective DIRECT-type algorithm with an efficient derivative-free local algorithm. The results obtained on a set of “hard” nonlinear constrained multi-objective test problems show viability of the proposed approach. Results on a hull-form optimization of a high-speed catamaran (sailing in head waves in the North Pacific Ocean) are also presented. In order to consider a real ocean environment, stochastic sea state and speed are taken into account. The problem is formulated as a multi-objective optimization aimed at (i) the reduction of the expected value of the mean total resistance in irregular head waves, at variable speed and (ii) the increase of the ship operability, with respect to a set of motion-related constraints. We show that the hybrid method performs well also on this industrial problem

    GIADA performance during Rosetta mission scientific operations at comet 67P

    Get PDF
    The Grain Impact Analyser and Dust Accumulator (GIADA) instrument onboard Rosetta studied the dust environment of comet 67P/Churyumov–Gerasimenko from 3.7 au inbound, through perihelion, to 3.8 au outbound, measuring the dust flow and the dynamic properties of individual particles. GIADA is composed of three subsystems: 1) Grain Detection System (GDS); 2) Impact Sensor (IS); and 3) Micro-Balances System (MBS). Monitoring the subsystems’ performance during operations is an important element for the correct calibration of scientific measurements. In this paper, we analyse the GIADA inflight calibration data obtained by internal calibration devices for the three subsystems during the period from 1 August 2014 to 31 October 2015. The calibration data testify a nominal behaviour of the instrument during these fifteen months of mission; the only exception is a minor loss of sensitivity for one of the two GDS receivers, attributed to dust contamination

    Noninvasive Ultrasound Monitoring of Embryonic and Fetal Development in Chinchilla lanigera to Predict Gestational Age: Preliminary Evaluation of This Species as a Novel Animal Model of Human Pregnancy

    Get PDF
    Ultrasound is a noninvasive routine method that allows real-time monitoring of fetal development in utero to determine gestational age and to detect congenital anomalies and multiple pregnancies. To date, the developmental biology of Chinchilla lanigera has not yet been characterized. This species has been found to undergo placentation, long gestation, and fetal dimensions similar to those in humans. The aim of this study was to assess the use of high-frequency ultrasound (HFUS) and clinical ultrasound (US) to predict gestational age in chinchillas and evaluate the possibility of this species as a new animal model for the study of human pregnancy. In this study, 35 pregnant females and a total of 74 embryos and fetuses were monitored. Ultrasound examination was feasible in almost all chinchilla subjects. It was possible to monitor the chinchilla embryo with HFUS from embryonic day (E) 15 to 60 and with US from E15 to E115 due to fetus dimensions. The placenta could be visualized and measured with HFUS from E15, but not with US until E30. From E30, the heartbeat became detectable and it was possible to measure fetal biometrics. In the late stages of pregnancy, stomach, eyes, and lenses became visible. Our study demonstrated the importance of employing both techniques while monitoring embryonic and fetal development to obtain an overall and detailed view of all structures and to recognize any malformation at an early stage. Pregnancy in chinchillas can be confirmed as early as the 15th day postmating, and sonographic changes and gestational age are well correlated. The quantitative measurements of fetal and placental growth performed in this study could be useful in setting up a database for comparison with human fetal ultrasounds. We speculate that, in the future, the chinchilla could be used as an animal model for the study of US in human pregnancy

    Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction

    Get PDF
    Citation: Liuzzi, V. C., Mirabelli, V., Cimmarusti, M. T., Haidukowski, M., Leslie, J. F., Logrieco, A. F., . . . Mule, G. (2017). Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction. Toxins, 9(2), 17. doi:10.3390/toxins9020045Members of the fungal genus Fusarium can produce numerous secondary metabolites, including the nonribosomal mycotoxins beauvericin (BEA) and enniatins (ENNs). Both mycotoxins are synthesized by the multifunctional enzyme enniatin synthetase (ESYN1) that contains both peptide synthetase and S-adenosyl-L-methionine-dependent N-methyltransferase activities. Several Fusarium species can produce ENNs, BEA or both, but the mechanism(s) enabling these differential metabolic profiles is unknown. In this study, we analyzed the primary structure of ESYN1 by sequencing esyn1 transcripts from different Fusarium species. We measured ENNs and BEA production by ultra-performance liquid chromatography coupled with photodiode array and Acquity QDa mass detector (UPLC-PDA-QDa) analyses. We predicted protein structures, compared the predictions by multivariate analysis methods and found a striking correlation between BEA/ENN-producing profiles and ESYN1 three-dimensional structures. Structural differences in the beta strand's Asn789-Ala793 and His797-Asp802 portions of the amino acid adenylation domain can be used to distinguish BEA/ENN-producing Fusarium isolates from those that produce only ENN

    Status of the Cylindical-GEM project for the KLOE-2 Inner Tracker

    Full text link
    The status of the R&D on the Cylindrical-GEM (CGEM) detector foreseen as Inner Tracker for KLOE-2, the upgrade of the KLOE experiment at the DAFNE phi-factory, will be presented. The R&D includes several activities: i) the construction and complete characterization of the full-size CGEM prototype, equipped with 650 microns pitch 1-D longitudinal strips; ii) the study of the 2-D readout with XV patterned strips and operation in magnetic field (up to 1.5T), performed with small planar prototypes in a dedicated test at the H4-SPS beam facility; iii) the characterization of the single-mask GEM technology for the realization of large-area GEM foils.Comment: 4 pages, 10 figures, Presented at Vienna Conference on Instrumentation (Feb 15-20, 2010, Vienna, Austria). Submitted to the Proceeding

    Gas Analysis and Monitoring Systems for the RPC Detector of CMS at LHC

    Get PDF
    The Resistive Plate Chambers (RPC) detector of the CMS experiment at the LHC proton collider (CERN, Switzerland) will employ an online gas analysis and monitoring system of the freon-based gas mixture used. We give an overview of the CMS RPC gas system, describe the project parameters and first results on gas-chromatograph analysis. Finally, we report on preliminary results for a set of monitor RPC.Comment: 9 pages, 8 figures. Presented by Stefano Bianco (Laboratori Nazionali di Frascati dell'INFN) at the IEEE NSS, San Diego (USA), October 200

    Metromedia, Inc. v. City of San Diego

    Get PDF
    corecore