27,934 research outputs found

    Short oestrous cycles in sheep during anoestrus involve defects in progesterone biosynthesis and luteal neovascularisation

    Get PDF
    Anoestrous ewes can be induced to ovulate by the socio-sexual, 'ram effect'. However, in some ewes the induced ovulation is followed by an abnormally short luteal phase causing a so called, "short cycle". The defect responsible for this luteal dysfunction has not been identified. In this experiment we investigated ovarian and uterine factors implicated in male-induced short cycles in anoestrus ewes using a combined endocrine and molecular strategy. Prior to ovulation, we were able to detect a moderate loss of thecal expression of steroid acute regulatory protein (STAR) in ewes that had not received progesterone priming (which prevents short cycles). At and following ovulation we were able to identify significant loss of expression of genes coding key proteins involved in the biosynthesis of progesterone (STAR, CYP11A1, HSD3B) as well as genes coding proteins critical for vascular development during early luteal development (VEGFA, VEGFR2) suggesting dysfunction in at least two pathways critical for normal luteal function. Furthermore, these changes were associated with a significant reduction of progesterone production and luteal weight. Additionally, we cast doubt on the proposed uterine-mediated effect of prostaglandin F2α as a cause of short cycles by demonstrating both the dysregulation of luteal expression of the PGF receptor, which mediates the luteal effects of PGF2α, and by finding no significant changes in the circulating concentrations of PGFM, the principal metabolite of PGF2α in ewes with short cycles. This study is the first of its kind to examine concurrently, the endocrine and molecular events in the follicular and early luteal stages of the short cycle

    SOST/Sclerostin Improves Posttraumatic Osteoarthritis and Inhibits MMP2/3 Expression After Injury.

    Get PDF
    Patients with anterior cruciate ligament (ACL) rupture are two times as likely to develop posttraumatic osteoarthritis (PTOA). Annually, there are ∼900,000 knee injuries in the United States, which account for ∼12% of all osteoarthritis (OA) cases. PTOA leads to reduced physical activity, deconditioning of the musculoskeletal system, and in severe cases requires joint replacement to restore function. Therefore, treatments that would prevent cartilage degradation post-injury would provide attractive alternatives to surgery. Sclerostin (Sost), a Wnt antagonist and a potent negative regulator of bone formation, has recently been implicated in regulating chondrocyte function in OA. To determine whether elevated levels of Sost play a protective role in PTOA, we examined the progression of OA using a noninvasive tibial compression overload model in SOST transgenic (SOSTTG ) and knockout (Sost-/- ) mice. Here we report that SOSTTG mice develop moderate OA and display significantly less advanced PTOA phenotype at 16 weeks post-injury compared with wild-type (WT) controls and Sost-/- . In addition, SOSTTG built ∼50% and ∼65% less osteophyte volume than WT and Sost-/- , respectively. Quantification of metalloproteinase (MMP) activity showed that SOSTTG had ∼2-fold less MMP activation than WT or Sost-/- , and this was supported by a significant reduction in MMP2/3 protein levels, suggesting that elevated levels of SOST inhibit the activity of proteolytic enzymes known to degrade articular cartilage matrix. Furthermore, intra-articular administration of recombinant Sost protein, immediately post-injury, also significantly decreased MMP activity levels relative to PBS-treated controls, and Sost activation in response to injury was TNFα and NF-κB dependent. These results provide in vivo evidence that sclerostin functions as a protective molecule immediately after joint injury to prevent cartilage degradation. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc

    Vitamin D3 supplementation of a high fat high sugar diet ameliorates prediabetic phenotype in female LDLR–/–and LDLR+/+mice

    Get PDF
    © 2017 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd. INTRODUCTION: Fatty liver disease is prevalent in populations with high caloric intake. Nutritherapeutic approaches are being considered, such as supplementary Vitamin D 3 , to improve aspects of metabolic syndrome, namely fatty liver disease, hyperlipidemia, and insulin resistance associated with obesity. METHODS: We analyzed female LDLR -/- and LDLR +/+ mice on a 10-week diabetogenic diet for markers of fatty liver disease, metabolic strain, and inflammation. RESULTS: The groups on a high fat high sugar diet with supplementary Vitamin D 3 , in comparison with the groups on a high fat high sugar diet alone, showed improved transaminase levels, significantly less hypertriglyceridemia and hyperinsulinemia, and histologically, there was less pericentral hepatic steatosis. Levels of non-esterified fatty acids and lipid peroxidation products were significantly lower in the group supplemented with additional Vitamin D 3 , as were systemic markers of inflammation (serum endotoxin and IL-6). M2 macrophage phenotype predominated in the group supplemented with additional Vitamin D 3 . Beneficial changes were observed as early as five weeks’ supplementation with Vitamin D 3 and extended to restoration of high fat high sugar diet induced decrease of bone mineral density. CONCLUSION: In summary, Vitamin D 3 was a significantly beneficial dietary additive to blunt a prediabetic phenotype in diet-induced obesity of female LDLR -/- and LDLR +/+ mice

    Novel statistical approaches for non-normal censored immunological data: analysis of cytokine and gene expression data

    Get PDF
    Background: For several immune-mediated diseases, immunological analysis will become more complex in the future with datasets in which cytokine and gene expression data play a major role. These data have certain characteristics that require sophisticated statistical analysis such as strategies for non-normal distribution and censoring. Additionally, complex and multiple immunological relationships need to be adjusted for potential confounding and interaction effects. Objective: We aimed to introduce and apply different methods for statistical analysis of non-normal censored cytokine and gene expression data. Furthermore, we assessed the performance and accuracy of a novel regression approach in order to allow adjusting for covariates and potential confounding. Methods: For non-normally distributed censored data traditional means such as the Kaplan-Meier method or the generalized Wilcoxon test are described. In order to adjust for covariates the novel approach named Tobit regression on ranks was introduced. Its performance and accuracy for analysis of non-normal censored cytokine/gene expression data was evaluated by a simulation study and a statistical experiment applying permutation and bootstrapping. Results: If adjustment for covariates is not necessary traditional statistical methods are adequate for non-normal censored data. Comparable with these and appropriate if additional adjustment is required, Tobit regression on ranks is a valid method. Its power, type-I error rate and accuracy were comparable to the classical Tobit regression. Conclusion: Non-normally distributed censored immunological data require appropriate statistical methods. Tobit regression on ranks meets these requirements and can be used for adjustment for covariates and potential confounding in large and complex immunological datasets

    Evaluation of DNA primase DnaG as a potential target for antibiotics

    Get PDF
    Mycobacteria contain genes for several DNA-dependent RNA primases, including dnaG, which encodes an essential replication enzyme that has been proposed as a target for antituberculosis compounds. An in silico analysis revealed that mycobacteria also possess archaeo-eukaryotic superfamily primases (AEPs) of unknown function. Using a homologous recombination system, we obtained direct evidence that wild-type dnaG cannot be deleted from the chromosome of Mycobacterium smegmatis without disrupting viability, even in backgrounds in which mycobacterial AEPs are overexpressed. In contrast, single-deletion AEP mutants or mutants defective for all four identified M. smegmatis AEP genes did not exhibit growth defects under standard laboratory conditions. Deletion of native dnaG in M. smegmatis was tolerated only after the integration of an extra intact copy of the M. smegmatis or Mycobacterium tuberculosis dnaG gene, under the control of chemically inducible promoters, into the attB site of the chromosome. M. tuberculosis and M. smegmatis DnaG proteins were overproduced and purified, and their primase activities were confirmed using radioactive RNA synthesis assays. The enzymes appeared to be sensitive to known inhibitors (suramin and doxorubicin) of DnaG. Notably, M. smegmatis bacilli appeared to be sensitive to doxorubicin and resistant to suramin. The growth and survival of conditional mutant mycobacterial strains in which DnaG was significantly depleted were only slightly affected under standard laboratory conditions. Thus, although DnaG is essential for mycobacterial viability, only low levels of protein are required for growth. This suggests that very efficient inhibition of enzyme activity would be required for mycobacterial DnaG to be useful as an antibiotic target

    Deficiency of annexins A5 and A6 induces complex changes in the transcriptome of growth plate cartilage but does not inhibit the induction of mineralization

    Get PDF
    Initiation of mineralization during endochondral ossification is a multistep process and has been assumed to correlate with specific interactions of annexins A5 and A6 and collagens. However, skeletal development appears to be normal in mice deficient for either A5 or A6, and the highly conserved structures led to the assumption that A5 and A6 may fulfill redundant functions. We have now generated mice deficient of both proteins. These mice were viable and fertile and showed no obvious abnormalities. Assessment of skeletal elements using histologic, ultrastructural, and peripheral quantitative computed tomographic methods revealed that mineralization and development of the skeleton were not significantly affected in mutant mice. Otherwise, global gene expression analysis showed subtle changes at the transcriptome level of genes involved in cell growth and intermediate metabolism. These results indicate that annexins A5 and A6 may not represent the essential annexins that promote mineralization in vivo

    Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis

    Get PDF
    Copyright @ 2012 Nature Publishing GroupThis article has been made available through the Brunel Open Access Publishing Fund.Background: The objective of this study was to determine the molecular mechanism(s) responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double strand break (DSB) repair in cells. Quantitative-PCR (Q-PCR) established the expression levels of key DNA DSB repair proteins. Imaging flow cytometry using Annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Over-expression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.This work was supported in part by The Vidal Sassoon Foundation USA. This article is made available through the Brunel Open Access Publishing Fund

    Detection of Tumor Cell-Specific mRNA in the Peripheral Blood of Patients with Breast Cancer-Evaluation of Several Markers with Real-Time Reverse Transcription-PCR

    Get PDF
    It is widely known that cells from epithelial tumors, e. g., breast cancer, detach from their primary tissue and enter blood circulation. We show that the presence of circulating tumor cells (CTCs) in samples of patients with primary and metastatic breast cancer can be detected with an array of selected tumor-marker-genes by reverse transcription real-time PCR. The focus of the presented work is on detecting differences in gene expression between healthy individuals and adjuvant and metastatic breast cancer patients, not an accurate quantification of these differences. Therefore, total RNA was isolated from blood samples of healthy donors and patients with primary or metastatic breast cancer after enrichment of mononuclear cells by density gradient centrifugation. After reverse transcription real-time PCR was carried out with a set of marker genes (BCSP, CK8, Her2, MGL, CK18, CK19). B2M and GAPDH were used as reference genes. Blood samples from patients with metastatic disease revealed increased cytokine gene levels in comparison to normal blood samples. Detection of a single gene was not sufficient to detect CTCs by reverse transcription real-time PCR. Markers used here were selected based on a recent study detecting cancer cells on different protein levels. The combination of such a marker array leads to higher and more specific discovery rates, predominantly in metastatic patients. Identification of CTCs by PCR methods may lead to better diagnosis and prognosis and could help to choose an adequate therapy

    Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections.

    Get PDF
    Background: A number of oral diseases, including periodontitis, derive from microbial biofilms and are associated with increased antimicrobial resistance. Despite the widespread use of mouthwashes being used as adjunctive measures to control these biofilms, their prolonged use is not recommended due to various side effects. Therefore, alternative broad-spectrum antimicrobials that minimise these effects are highly sought after. Carbohydrate derived fulvic acid (CHD-FA) is an organic acid which has previously demonstrated to be microbiocidal against Candida albicans biofilms, therefore, the aims of this study were to evaluate the antibacterial activity of CHD-FA against orally derived biofilms and to investigate adjunctive biological effects.<p></p> Methods: Minimum inhibitory concentrations were evaluated for CHD-FA and chlorhexidine (CHX) against a range of oral bacteria using standardised microdilution testing for planktonic and sessile. Scanning electron microscopy was also employed to visualise changes in oral biofilms after antimicrobial treatment. Cytotoxicity of these compounds was assessed against oral epithelial cells, and the effect of CHD-FA on host inflammatory markers was assessed by measuring mRNA and protein expression.<p></p> Results: CHD-FA was highly active against all of the oral bacteria tested, including Porphyromonas gingivalis, with a sessile minimum inhibitory concentration of 0.5%. This concentration was shown to kill multi-species biofilms by approximately 90%, levels comparable to that of chlorhexidine (CHX). In a mammalian cell culture model, pretreatment of epithelial cells with buffered CHD-FA was shown to significantly down-regulate key inflammatory mediators, including interleukin-8 (IL-8), after stimulation with a multi-species biofilm.<p></p> Conclusions: Overall, CHD-FA was shown to possess broad-spectrum antibacterial activity, with a supplementary function of being able to down-regulate inflammation. These properties offer an attractive spectrum of function from a naturally derived compound, which could be used as an alternative topical treatment strategy for oral biofilm diseases. Further studies in vitro and in vivo are required to determine the precise mechanism by which CHD-FA modulates the host immune response.<p></p&gt

    Changes to cholesterol trafficking in macrophages by Leishmania parasites infection

    Get PDF
    Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse‐chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low‐density lipoproteins indicated that retention of this source of cholesterol is increased in parasite‐containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann–Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites’ membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA‐encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol‐dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses
    corecore