376 research outputs found
Investigating worn surfaces of nanoscale TiAlN/VN multilayer coating using FIB and TEM
TiAlN/VN multilayer coatings exhibit excellent dry sliding wear resistance and low friction coefficient, believed to be associated with the formation of tribo-films comprising Magnéli phases such as V2O5. In order to investigate this hypothesis, dry sliding wear of TiAlN/VN coatings was undertaken against Al2O3. Focused ion beam was used to generate site-specific TEM specimens. A thin (2-20nm) tribo-film was observed at the worn surface, with occasional 'roll-like' wear debris (φ 5-40nm). Both were amorphous and contained the same Ti, Al and V ratio as the coating, but with the nitrogen largely replaced by oxygen. No evidence of Magnéli phases was found. © 2006 IOP Publishing Ltd
A Generic Minimal Discrete Model for Toroidal Moments and Its Experimental Realization
It is well known that a closed loop of magnetic dipoles can give rise to the
rather elusive toroidal moment. However, artificial structures required to
generate the necessary magnetic moments are typically optically large, complex
to make and easily compromised by the kinetic inductance at high frequencies.
Instead of using magnetic dipoles, we propose a minimal model based on just
three aligned discrete electric dipoles in which the occurrence of resonant
toroidal modes is guaranteed by symmetry. The advantage of this model is its
simplicity and the same model supports toroidal moments from the microwave
regime up to optical frequencies as exemplified by a three-antenna array and a
system consisting of three nano-sized plasmonic particles. Both the microwave
and high-frequency configurations exhibit non-radiating "anapoles". Experiments
in the microwave regime confirm the theoretical predictions.Comment: 21 pages, 6 figure
Time scales of epidemic spread and risk perception on adaptive networks
Incorporating dynamic contact networks and delayed awareness into a contagion
model with memory, we study the spreading patterns of infectious diseases in
connected populations. It is found that the spread of an infectious disease is
not only related to the past exposures of an individual to the infected but
also to the time scales of risk perception reflected in the social network
adaptation. The epidemic threshold is found to decrease with the rise
of the time scale parameter s and the memory length T, they satisfy the
equation .
Both the lifetime of the epidemic and the topological property of the evolved
network are considered. The standard deviation of the degree
distribution increases with the rise of the absorbing time , a power-law
relation is found
Power-law cosmological solution derived from DGP brane with a brane tachyon field
By studying a tachyon field on the DGP brane model, in order to embed the 4D
standard Friedmann equation with a brane tachyon field in 5D bulk, the metric
of the 5D spacetime is presented. Then, adopting the inverse square potential
of tachyon field, we obtain an expanding universe with power-law on the brane
and an exact 5D solution.Comment: 8 pages, 1 figure, accepted by IJMP
Statefinder Parameters for Five-Dimensional Cosmology
We study the statefinder parameter in the five-dimensional big bounce model,
and apply it to differentiate the attractor solutions of quintessence and
phantom field. It is found that the evolving trajectories of these two
attractor solutions in the statefinder parameters plane are quite different,
and that are different from the statefinder trajectories of other dark energy
models.Comment: 8 pages, 12 figures. accepted by MPL
Statefinder Parameters for Interacting Phantom Energy with Dark Matter
We apply in this paper the statefinder parameters to the interacting phantom
energy with dark matter. There are two kinds of scaling solutions in this
model. It is found that the evolving trajectories of these two scaling
solutions in the statefinder parameter plane are quite different, and that are
also different from the statefinder diagnostic of other dark energy models.Comment: 9 pages, 12 figures, some references are added, some words are
modifie
Structural and electronic origin of the magnetic structures in hexagonal LuFeO
Using combined theoretical and experimental approaches, we studied the
structural and electronic origin of the magnetic structure in hexagonal
LuFeO. Besides showing the strong exchange coupling that is consistent with
the high magnetic ordering temperature, the previously observed spin
reorientation transition is explained by the theoretically calculated magnetic
phase diagram. The structural origin of this spin reorientation that is
responsible for the appearance of spontaneous magnetization, is identified by
theory and verified by x-ray diffraction and absorption experiments.Comment: 5 pages, 2 tables and 4 figures, Please contact us for the
supplementary material. Accepted in Phys. Rev. B, in productio
Revisiting Cardassian Model and Cosmic Constraint
In this paper, we revisit the Cardassian model in which the radiation energy
component is included. It is important for early epoch when the radiation
cannot be neglected because the equation of state (EoS) of the effective dark
energy becomes time variable. Therefore, it is not equivalent to the
quintessence model with a constant EoS anymore. This situation was almost
overlooked in the literature. By using the recent released Union2 557 of type
Ia supernovae (SN Ia), the baryon acoustic oscillation (BAO) from Sloan Digital
Sky Survey and the WiggleZ data points, the full information of cosmic
microwave background (CMB) measurement given by the seven-year Wilkinson
Microwave Anisotropy Probe observation, we constrain the Cardassian model via
the Markov Chain Monte Carlo (MCMC) method. A tight constraint is obtained: in regions. The
deviation of Cardassian model from quintessence model is shown in CMB
anisotropic power spectra at high l's parts due to the evolution of EoS. But it
is about the order of 0.1% which cannot be discriminated by current data sets.
The Cardassian model is consistent with current cosmic observational data sets.Comment: 6 pages, 5 figures, match the published versio
Revisiting Generalized Chaplygin Gas as a Unified Dark Matter and Dark Energy Model
In this paper, we revisit generalized Chaplygin gas (GCG) model as a unified
dark matter and dark energy model. The energy density of GCG model is given as
,
where and are two model parameters which will be constrained by
type Ia supernova as standard candles, baryon acoustic oscillation as standard
rulers and the seventh year full WMAP data points. In this paper, we will not
separate GCG into dark matter and dark energy parts any more as adopted in the
literatures. By using Markov Chain Monte Carlo method, we find the result:
and .Comment: 6 pages, 4 figure
- …
