12 research outputs found
Comparative analyses imply that the enigmatic sigma factor 54 is a central controller of the bacterial exterior
Contains fulltext :
95738.pdf (publisher's version ) (Open Access)BACKGROUND: Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. RESULTS: We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. CONCLUSION: Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm
Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40
Lactobacillus paracasei Comparative Genomics: Towards Species Pan-Genome Definition and Exploitation of Diversity
Contains fulltext :
119129.pdf (publisher's version ) (Open Access)Lactobacillus paracasei is a member of the normal human and animal gut microbiota and is used extensively in the food industry in starter cultures for dairy products or as probiotics. With the development of low-cost, high-throughput sequencing techniques it has become feasible to sequence many different strains of one species and to determine its "pan-genome". We have sequenced the genomes of 34 different L. paracasei strains, and performed a comparative genomics analysis. We analysed genome synteny and content, focussing on the pan-genome, core genome and variable genome. Each genome was shown to contain around 2800-3100 protein-coding genes, and comparative analysis identified over 4200 ortholog groups that comprise the pan-genome of this species, of which about 1800 ortholog groups make up the conserved core. Several factors previously associated with host-microbe interactions such as pili, cell-envelope proteinase, hydrolases p40 and p75 or the capacity to produce short branched-chain fatty acids (bkd operon) are part of the L. paracasei core genome present in all analysed strains. The variome consists mainly of hypothetical proteins, phages, plasmids, transposon/conjugative elements, and known functions such as sugar metabolism, cell-surface proteins, transporters, CRISPR-associated proteins, and EPS biosynthesis proteins. An enormous variety and variability of sugar utilization gene cassettes were identified, with each strain harbouring between 25-53 cassettes, reflecting the high adaptability of L. paracasei to different niches. A phylogenomic tree was constructed based on total genome contents, and together with an analysis of horizontal gene transfer events we conclude that evolution of these L. paracasei strains is complex and not always related to niche adaptation. The results of this genome content comparison was used, together with high-throughput growth experiments on various carbohydrates, to perform gene-trait matching analysis, in order to link the distribution pattern of a specific phenotype to the presence/absence of specific sets of genes
Axial Length/Corneal Radius Ratio: Association with Refractive State and Role on Myopia Detection Combined with Visual Acuity in Chinese Schoolchildren
PurposeTo evaluate the association between the AL/CR ratio and refractive state and explore the effectiveness of this ratio in the assessment of myopia, especially when combined with uncorrected visual acuity in schoolchildren among whom myopia is common.MethodsCross sectional study. 4686 children from 6 primary schools, aged from 6 to 12 years were selected using the clustered-stratified random sampling method. Uncorrected visual acuity (UCVA), axial length (AL), corneal radius of curvature (CR), and cycloplegic refraction were tested. Refraction was measured as the spherical equivalent (SE).Results3922 children were included in the analysis. The mean AL/CR ratio was 2.973±0.002, increased with age, and different in gender. The coefficients of correlations of the SE with the AL/CR ratio, AL, and CR were -0.811, -0.657, and 0.095, respectively. Linear regression showed a 10.72 D shift towards myopia with every 1 unit increase in the AL/CR ratio (PConclusionsThe AL/CR ratio was found to explain the total variance in SE better than AL alone. The effectiveness of the AL/CR ratio was statistically significantly better than UCVA for detecting myopia in children, and combining the two produced increased sensitivity without significantly decreasing specificity
Osteopontin(OPN)-induced increase in human mammary epithelial cell invasiveness is urokinase (uPA)-dependent
Voltammetric determination of trace level of cadmium in mussels and seawaters by a lacunar apatite-modified carbon electrode
Temporal patterns of active fire density and its relationship with a satellite fuel greenness index by vegetation type and region in Mexico during 2003–2014
Active DNA demethylation: many roads lead to Rome
DNA methylation is one of the best-characterized epigenetic modifications and has been implicated in numerous biological processes, including transposable element silencing, genomic imprinting and X chromosome inactivation. Compared with other epigenetic modifications, DNA methylation is thought to be relatively stable. Despite its role in long-term silencing, DNA methylation is more dynamic than originally thought as active DNA demethylation has been observed during specific stages of development. In the past decade, many enzymes have been proposed to carry out active DNA demethylation and growing evidence suggests that, depending on the context, this process may be achieved by multiple mechanisms. Insight into how DNA methylation is dynamically regulated will broaden our understanding of epigenetic regulation and have great implications in somatic cell reprogramming and regenerative medicine
