1,099 research outputs found

    Manual D\u27Enigmistica

    Get PDF
    My obsession for playing with words was ignited nearly ten years ago, with the discovery of a palindrome in a Julio Cortazar tale. Since then, I have devoted myself to accumulating historical material relating to word games, as well as to creating new ones. Undeniably, an inherent element of such an obsession is the opportunity offered to the writer to master language and manipulate it in new ways

    Capillaroscopy in 2016 : new perspectives in systemic sclerosis

    Get PDF
    Systemic sclerosis (SSc) is an autoimmune disorder of unknown etiology characterized by early impairment of the microvascular system. Nailfold microangiopathy and decreased peripheral blood perfusion are typical clinical aspects of SSc. The best method to evaluate vascular injury is nailfold videocapillaroscopy, which detects peripheral capillary morphology, and classifies and scores the abnormalities into different patterns of microangiopathy. Microangiopathy appears to be the best evaluable predictor of the disease development and has been observed to precede the other symptoms by many years. Peripheral blood perfusion is also impaired in SSc, and there are different methods to assess it: laser Doppler and laser speckle techniques, thermography and other emerging techniques

    Light Generation and Harvesting in a Van der Waals Heterostructure

    Get PDF
    Two-dimensional (2D) materials are a new type of materials under intense study because of their interesting physical properties and wide range of potential applications from nanoelectronics to sensing and photonics. Monolayers of semiconducting transition metal dichalcogenides MoS2 or WSe2 have been proposed as promising channel materials for field-effect transistors (FETs). Their high mechanical flexibility, stability and quality coupled with potentially inexpensive production methods offer potential advantages compared to organic and crystalline bulk semiconductors. Due to quantum mechanical confinement, the band gap in monolayer MoS2 is direct in nature, leading to a strong interaction with light that can be exploited for building phototransistors and ultrasensitive photodetectors. Here, we report on the realization of light-emitting diodes based on vertical heterojunctions composed of n-type monolayer MoS2 and p-type silicon. Careful interface engineering allows us to realize diodes showing rectification and light emission from the entire surface of the heterojunction. Electroluminescence spectra show clear signs of direct excitons related to the optical transitions between the conduction and valence bands. Our pn diodes can also operate as solar cells, with typical external quantum efficiency exceeding 4%. Our work opens up the way to more sophisticated optoelectronic devices such as lasers and heterostructure solar cells based on hybrids of two-dimensional (2D) semiconductors and silicon.Comment: Submitted versio

    Programación de un algoritmo de bajo consumo para medir intervalos de tiempo mediante el MSP430

    Get PDF
    Hoy en día empieza a ser una necesidad la aplicación de procesos controlados por microcontroladores destinados a bajo consumo, sobre todo en el campo de los sistemas autónomos. Se programará en un microcontrolador un algoritmo destinado a medir tiempos con la máxima resolución, precisión y exactitud posible teniendo en cuenta siempre minimizar al máximo el consumo del sistema. Previamente se estudiarán los posibles problemas que se encuentran al medir tiempos con un microcontrolador y los métodos más adecuados para ahorrar en el consumo. También se estudiará la técnica de Dynamic Power Management con la cual se implementará el sistema propuesto. También se estudiarán las características principales que debe tener nuestro microcontrolador para poder llevar a cabo el proyecto, como por ejemplo la posibilidad de trabajar dinámicamente con varios relojes o la posibilidad de activar varios modos de bajo consumo. Finalmente se mostrarán los resultados obtenidos, se analizará los logros conseguidos con el algoritmo propuesto y se propondrá nuevos caminos para la mejora y ampliación del sistema

    Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features

    Full text link
    Sub-cortical brain structure segmentation in Magnetic Resonance Images (MRI) has attracted the interest of the research community for a long time because morphological changes in these structures are related to different neurodegenerative disorders. However, manual segmentation of these structures can be tedious and prone to variability, highlighting the need for robust automated segmentation methods. In this paper, we present a novel convolutional neural network based approach for accurate segmentation of the sub-cortical brain structures that combines both convolutional and prior spatial features for improving the segmentation accuracy. In order to increase the accuracy of the automated segmentation, we propose to train the network using a restricted sample selection to force the network to learn the most difficult parts of the structures. We evaluate the accuracy of the proposed method on the public MICCAI 2012 challenge and IBSR 18 datasets, comparing it with different available state-of-the-art methods and other recently proposed deep learning approaches. On the MICCAI 2012 dataset, our method shows an excellent performance comparable to the best challenge participant strategy, while performing significantly better than state-of-the-art techniques such as FreeSurfer and FIRST. On the IBSR 18 dataset, our method also exhibits a significant increase in the performance with respect to not only FreeSurfer and FIRST, but also comparable or better results than other recent deep learning approaches. Moreover, our experiments show that both the addition of the spatial priors and the restricted sampling strategy have a significant effect on the accuracy of the proposed method. In order to encourage the reproducibility and the use of the proposed method, a public version of our approach is available to download for the neuroimaging community

    A robust braille recognition system

    Get PDF
    Braille is the most effective means of written communication between visually-impaired and sighted people. This paper describes a new system that recognizes Braille characters in scanned Braille document pages. Unlike most other approaches, an inexpensive flatbed scanner is used and the system requires minimal interaction with the user. A unique feature of this system is the use of context at different levels (from the pre-processing of the image through to the post-processing of the recognition results) to enhance robustness and, consequently, recognition results. Braille dots composing characters are identified on both single and double-sided documents of average quality with over 99% accuracy, while Braille characters are also correctly recognised in over 99% of documents of average quality (in both single and double-sided documents)

    Rational Strain Engineering in Delafossite Oxides for Highly Efficient Hydrogen Evolution Catalysis in Acidic Media

    Full text link
    The rational design of hydrogen evolution reaction (HER) electrocatalysts which are competitive with platinum is an outstanding challenge to make power-to-gas technologies economically viable. Here, we introduce the delafossites PdCrO2_2, PdCoO2_2 and PtCoO2_2 as a new family of electrocatalysts for the HER in acidic media. We show that in PdCoO2_2 the inherently strained Pd metal sublattice acts as a pseudomorphic template for the growth of a strained (by +2.3%) Pd rich capping layer under reductive conditions. The surface modification continuously improves the electrocatalytic activity by simultaneously increasing the exchange current density j0_0 from 2 to 5 mA/cmgeo2^2_{geo} and by reducing the Tafel slope down to 38 mV/decade, leading to overpotentials η10\eta_{10} < 15 mV for 10 mA/cmgeo2^2_{geo}, superior to bulk platinum. The greatly improved activity is attributed to the in-situ stabilization of a β\beta-palladium hydride phase with drastically enhanced surface catalytic properties with respect to pure or nanostructured palladium. These findings illustrate how operando induced electrodissolution can be used as a top-down design concept for rational surface and property engineering through the strain-stabilized formation of catalytically active phases
    corecore