208 research outputs found
Light Generation and Harvesting in a Van der Waals Heterostructure
Two-dimensional (2D) materials are a new type of materials under intense
study because of their interesting physical properties and wide range of
potential applications from nanoelectronics to sensing and photonics.
Monolayers of semiconducting transition metal dichalcogenides MoS2 or WSe2 have
been proposed as promising channel materials for field-effect transistors
(FETs). Their high mechanical flexibility, stability and quality coupled with
potentially inexpensive production methods offer potential advantages compared
to organic and crystalline bulk semiconductors. Due to quantum mechanical
confinement, the band gap in monolayer MoS2 is direct in nature, leading to a
strong interaction with light that can be exploited for building
phototransistors and ultrasensitive photodetectors. Here, we report on the
realization of light-emitting diodes based on vertical heterojunctions composed
of n-type monolayer MoS2 and p-type silicon. Careful interface engineering
allows us to realize diodes showing rectification and light emission from the
entire surface of the heterojunction. Electroluminescence spectra show clear
signs of direct excitons related to the optical transitions between the
conduction and valence bands. Our pn diodes can also operate as solar cells,
with typical external quantum efficiency exceeding 4%. Our work opens up the
way to more sophisticated optoelectronic devices such as lasers and
heterostructure solar cells based on hybrids of two-dimensional (2D)
semiconductors and silicon.Comment: Submitted versio
Rational Strain Engineering in Delafossite Oxides for Highly Efficient Hydrogen Evolution Catalysis in Acidic Media
The rational design of hydrogen evolution reaction (HER) electrocatalysts
which are competitive with platinum is an outstanding challenge to make
power-to-gas technologies economically viable. Here, we introduce the
delafossites PdCrO, PdCoO and PtCoO as a new family of
electrocatalysts for the HER in acidic media. We show that in PdCoO the
inherently strained Pd metal sublattice acts as a pseudomorphic template for
the growth of a strained (by +2.3%) Pd rich capping layer under reductive
conditions. The surface modification continuously improves the electrocatalytic
activity by simultaneously increasing the exchange current density j from 2
to 5 mA/cm and by reducing the Tafel slope down to 38 mV/decade,
leading to overpotentials < 15 mV for 10 mA/cm, superior
to bulk platinum. The greatly improved activity is attributed to the in-situ
stabilization of a -palladium hydride phase with drastically enhanced
surface catalytic properties with respect to pure or nanostructured palladium.
These findings illustrate how operando induced electrodissolution can be used
as a top-down design concept for rational surface and property engineering
through the strain-stabilized formation of catalytically active phases
Visual Understanding of Light Absorption and Waveguiding in Standing Nanowires with 3D Fluorescence Confocal Microscopy
Semiconductor nanowires are promising building blocks for next generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.LMS
Dissimilar responses of fungal and bacterial communities to soil transplantation simulating abrupt climate changes.
Both fungi and bacteria play essential roles in regulating soil carbon cycling. To predict future carbon stability, it is imperative to understand their responses to environmental changes, which is subject to large uncertainty. As current global warming is causing range shifts toward higher latitudes, we conducted three reciprocal soil transplantation experiments over large transects in 2005 to simulate abrupt climate changes. Six years after soil transplantation, fungal biomass of transplanted soils showed a general pattern of changes from donor sites to destination, which were more obvious in bare fallow soils than in maize cropped soils. Strikingly, fungal community compositions were clustered by sites, demonstrating that fungi of transplanted soils acclimatized to the destination environment. Several fungal taxa displayed sharp changes in relative abundance, including Podospora, Chaetomium, Mortierella and Phialemonium. In contrast, bacterial communities remained largely unchanged. Consistent with the important role of fungi in affecting soil carbon cycling, 8.1%-10.0% of fungal genes encoding carbon-decomposing enzymes were significantly (p < 0.01) increased as compared with those from bacteria (5.7%-8.4%). To explain these observations, we found that fungal occupancy across samples was mainly determined by annual average air temperature and rainfall, whereas bacterial occupancy was more closely related to soil conditions, which remained stable 6 years after soil transplantation. Together, these results demonstrate dissimilar response patterns and resource partitioning between fungi and bacteria, which may have considerable consequences for ecosystem-scale carbon cycling
Ga-assisted growth of GaAs nanowires on silicon, comparison of surface SiOx of different nature
Physical properties of surfaces are extremely important for initiation and nucleation of crystal growth, including nanowires. In recent years, fluctuations in surface characteristics have often been related to unreproducible growth of GaAs nanowires on Si by the Ga-assisted method. We report on a systematic study of the occurrence of GaAs nanowire growth on silicon by the Ga-assisted method for different kinds of silicon oxides: native, thermal and hydrogen silsesquioxane (HSQ). We find that success in achieving nanowires and the growth conditions such as gallium rate and substrate temperature depend mainly on the physical properties of the surface: oxide stoichiometry, oxide thickness and surface roughness. These results constitute a step further towards the integration of GaAs technology on the Si platform. (C) 2014 Elsevier B.V. All rights reserved
Raman spectroscopy of self-catalyzed GaAs1-xSbx nanowires grown on silicon
Thanks to their wide band structure tunability, GaAs1-xSbx nanowires provide exciting perspectives in optoelectronic and energy harvesting applications. The control of composition and strain of these ternary alloys is crucial in the determination of their optical and electronic properties. Raman scattering provides information on the vibrational properties of materials, which can be related to the composition and strain. We present a systematic study of the vibrational properties of GaAs1-xSbx nanowires for Sb contents from 0 to 44%, as determined by energy-dispersive x-ray analyses. We find that optical phonons red-shift with increasing Sb content. We explain the shift by alloying effects, including mass disorder, dielectric changes and ionic plasmon coupling. The influence of Sb on the surface optical modes is addressed. Finally, we compare the luminescence yield between GaAs and GaAs1-xSbx, which can be related to a lower surface recombination rate. This work provides a reference for the study of ternary alloys in the form of nanowires, and demonstrates the tunability and high material quality of gold-free ternary antimonide nanowires directly grown on silicon
Efficient Multiterminal Spectrum Splitting via a Nanowire Array Solar Cell
Nanowire-based solar cells opened a new avenue for increasing conversion efficiency and rationalizing material use by growing different III-V materials on silicon substrates. Here, we propose a multiterminal nanowire solar cell design with a theoretical conversion efficiency of 48.3% utilizing an efficient lateral spectrum splitting between three different III-V material nanowire arrays grown on a flat silicon substrate. This allows choosing an ideal material combination to achieve the proper spectrum splitting as well as fabrication feasibility. The high efficiency is possible due to an enhanced absorption cross-section of standing nanowires and optimization of the geometric parameters. Furthermore, we propose a multiterminal contacting scheme that can be fabricated with a technology close to standard CMOS. As an alternative we also consider a single power source with a module level voltage matching. These new concepts open avenues for next-generation solar cells for terrestrial and space applications
TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions
Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9orf72) have recently been linked to frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis, and may be the most common genetic cause of both neurodegenerative diseases. Genetic variants at TMEM106B influence risk for the most common neuropathological subtype of FTLD, characterized by inclusions of TAR DNA-binding protein of 43 kDa (FTLD-TDP). Previous reports have shown that TMEM106B is a genetic modifier of FTLD-TDP caused by progranulin (GRN) mutations, with the major (risk) allele of rs1990622 associating with earlier age at onset of disease. Here, we report that rs1990622 genotype affects age at death in a single-site discovery cohort of FTLD patients with C9orf72 expansions (n = 14), with the major allele correlated with later age at death (p = 0.024). We replicate this modifier effect in a 30-site international neuropathological cohort of FTLD-TDP patients with C9orf72 expansions (n = 75), again finding that the major allele associates with later age at death (p = 0.016), as well as later age at onset (p = 0.019). In contrast, TMEM106B genotype does not affect age at onset or death in 241 FTLD-TDP cases negative for GRN mutations or C9orf72 expansions. Thus, TMEM106B is a genetic modifier of FTLD with C9orf72 expansions. Intriguingly, the genotype that confers increased risk for developing FTLD-TDP (major, or T, allele of rs1990622) is associated with later age at onset and death in C9orf72 expansion carriers, providing an example of sign epistasis in human neurodegenerative disease
Multifocal Transcranial Direct Current Stimulation in Primary Progressive Aphasia Does Not Provide a Clinical Benefit Over Speech Therapy
Primary progressive aphasia (PPA) is a group of neurodegenerative disorders including Alzheimer's disease and frontotemporal dementia characterized by language deterioration. Transcranial direct current stimulation (tDCS) is a non-invasive intervention for brain dysfunction.To evaluate the tolerability and efficacy of tDCS combined with speech therapy in the three variants of PPA. We evaluate changes in fMRI activity in a subset of patients.Double-blinded, randomized, cross-over, and sham-controlled tDCS study. 15 patients with PPA were included. Each patient underwent two interventions: a) speech therapy + active tDCS and b) speech therapy + sham tDCS stimulation. A multifocal strategy with anodes placed in the left frontal and parietal regions was used to stimulate the entire language network. Efficacy was evaluated by comparing the results of two independent sets of neuropsychological assessments administered at baseline, immediately after the intervention, and at 1 month and 3 months after the intervention. In a subsample, fMRI scanning was performed before and after each intervention.The interventions were well tolerated. Participants in both arms showed clinical improvement, but no differences were found between active and sham tDCS interventions in any of the evaluations. There were trends toward better outcomes in the active tDCS group for semantic association and reading skills. fMRI identified an activity increase in the right frontal medial cortex and the bilateral paracingulate gyrus after the active tDCS intervention.We did not find differences between active and sham tDCS stimulation in clinical scores of language function in PPA patients
- …
