778 research outputs found
Aportacions a la història d'Orta (V). Del segle XIII al segle XV: situació de les notícies que tenim d'Orta en el context general
Fluctuations in the electron system of a superconductor exposed to a photon flux
We report on fluctuations in the electron system, Cooper pairs and
quasiparticles, of a superconducting aluminium film. The superconductor is
exposed to pair-breaking photons (1.54 THz), which are coupled through an
antenna. The change in the complex conductivity of the superconductor upon a
change in the quasiparticle number is read out by a microwave resonator. A
large range in radiation power can be chosen by carefully filtering the
radiation from a blackbody source. We identify two regimes. At high radiation
power, fluctuations in the electron system caused by the random arrival rate of
the photons are resolved, giving a straightforward measure of the optical
efficiency (48%). At low radiation power fluctuations are dominated by excess
quasiparticles, the number of which is measured through their recombination
lifetime
Surface wave control for large arrays of microwave kinetic inductance detectors
Large ultra-sensitive detector arrays are needed for present and future
observatories for far infra-red, submillimeter wave (THz), and millimeter wave
astronomy. With increasing array size, it is increasingly important to control
stray radiation inside the detector chips themselves, the surface wave. We
demonstrate this effect with focal plane arrays of 880 lens-antenna coupled
Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field
measurements of the MKID optical response versus the position on the array of a
reimaged optical source. We demonstrate that the optical response of a detector
in these arrays saturates off-pixel at the dB level compared to the
peak pixel response. The result is that the power detected from a point source
at the pixel position is almost identical to the stray response integrated over
the chip area. With such a contribution, it would be impossible to measure
extended sources, while the point source sensitivity is degraded due to an
increase of the stray loading. However, we show that by incorporating an
on-chip stray light absorber, the surface wave contribution is reduced by a
factor 10. With the on-chip stray light absorber the point source response
is close to simulations down to the dB level, the simulation based on
an ideal Gaussian illumination of the optics. In addition, as a crosscheck we
show that the extended source response of a single pixel in the array with the
absorbing grid is in agreement with the integral of the point source
measurements.Comment: accepted for publication in IEEE Transactions on Terahertz Science
and Technolog
MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer
SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and
submillimeter wavelength astronomy. Its very small size, wide spectral
bandwidth, and highly multiplexed readout will enable construction of powerful
multibeam spectrometers for high-redshift observations. The spectrometer
consists of a horn-coupled microstrip feedline, a bank of narrow-band
superconducting resonator filters that provide spectral selectivity, and
Kinetic Inductance Detectors (KIDs) that detect the power admitted by each
filter resonator. The design is realized using thin-film lithographic
structures on a silicon wafer. The mm-wave microstrip feedline and spectral
filters of the first prototype are designed to operate in the band from 195-310
GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed
to operate at hundreds of MHz and are fabricated from titanium nitride with a
Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip,
passes through the frequency-selective filter, and is finally absorbed by the
corresponding KID where it causes a measurable shift in the resonant frequency.
In this proceedings, we present the design of the KIDs employed in SuperSpec
and the results of initial laboratory testing of a prototype device. We will
also briefly describe the ongoing development of a demonstration instrument
that will consist of two 500-channel, R=700 spectrometers, one operating in the
1-mm atmospheric window and the other covering the 650 and 850 micron bands.Comment: As submitted, except that "in prep" references have been update
Eliminating stray radiation inside large area imaging arrays
With increasing array size, it is increasingly important to control stray
radiation inside the detector chips themselves. We demonstrate this effect with
focal plane arrays of absorber coupled Lumped Element microwave Kinetic
Inductance Detectors (LEKIDs) and lens-antenna coupled distributed quarter
wavelength Microwave Kinetic Inductance Detectors (MKIDs). In these arrays the
response from a point source at the pixel position is at a similar level to the
stray response integrated over the entire chip area. For the antenna coupled
arrays, we show that this effect can be suppressed by incorporating an on-chip
stray light absorber. A similar method should be possible with the LEKID array,
especially when they are lens coupled.Comment: arXiv admin note: substantial text overlap with arXiv:1707.0214
The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band
We have measured the absorption of terahertz radiation in a BCS
superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using
a broadband antenna-lens system and a tantalum microwave resonator. From low
frequencies, the response of the resonator rises rapidly to a maximum at the
gap edge of the superconductor. From there on the response drops to half the
maximum response at twice the pair-breaking energy. At higher frequencies, the
response rises again due to trapping of pair-breaking phonons in the
superconductor. In practice this is the first measurement of the frequency
dependence of the quasiparticle creation efficiency due to pair-breaking in a
superconductor. The efficiency, calculated from the different non-equilibrium
quasiparticle distribution functions at each frequency, is in agreement with
the measurements.We would like to thank Jan Barkhof for help with the FTS calibration. This work was in part supported by ERC starting Grant Nos. ERC-2009-StG and 240602 TFPA. T. M. Klapwijk acknowledges financial support from the Ministry of Science and Education of Russia under Contract No. 14.B25.31.0007 and from the European Research Council Advanced Grant No. 339306 (METIQUM). P. J. de Visser acknowledges support from a Niels Stensen Fellowship.This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.492309
BICEP2 II: Experiment and Three-Year Data Set
We report on the design and performance of the BICEP2 instrument and on its
three-year data set. BICEP2 was designed to measure the polarization of the
cosmic microwave background (CMB) on angular scales of 1 to 5 degrees
(=40-200), near the expected peak of the B-mode polarization signature of
primordial gravitational waves from cosmic inflation. Measuring B-modes
requires dramatic improvements in sensitivity combined with exquisite control
of systematics. The BICEP2 telescope observed from the South Pole with a 26~cm
aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new
detector design in which beam-defining slot antenna arrays couple to
transition-edge sensor (TES) bolometers, all fabricated on a common substrate.
The antenna-coupled TES detectors supported scalable fabrication and
multiplexed readout that allowed BICEP2 to achieve a high detector count of 500
bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree
angular scales. After optimization of detector and readout parameters, BICEP2
achieved an instrument noise-equivalent temperature of 15.8 K sqrt(s). The
full data set reached Stokes Q and U map depths of 87.2 nK in square-degree
pixels (5.2 K arcmin) over an effective area of 384 square degrees within
a 1000 square degree field. These are the deepest CMB polarization maps at
degree angular scales to date. The power spectrum analysis presented in a
companion paper has resulted in a significant detection of B-mode polarization
at degree scales.Comment: 30 pages, 24 figure
- …
