778 research outputs found

    Una visió de la reforma al món rural. De l'escola a l'institut

    Get PDF

    El convent d'Orta

    Get PDF

    Fluctuations in the electron system of a superconductor exposed to a photon flux

    Get PDF
    We report on fluctuations in the electron system, Cooper pairs and quasiparticles, of a superconducting aluminium film. The superconductor is exposed to pair-breaking photons (1.54 THz), which are coupled through an antenna. The change in the complex conductivity of the superconductor upon a change in the quasiparticle number is read out by a microwave resonator. A large range in radiation power can be chosen by carefully filtering the radiation from a blackbody source. We identify two regimes. At high radiation power, fluctuations in the electron system caused by the random arrival rate of the photons are resolved, giving a straightforward measure of the optical efficiency (48%). At low radiation power fluctuations are dominated by excess quasiparticles, the number of which is measured through their recombination lifetime

    Surface wave control for large arrays of microwave kinetic inductance detectors

    Get PDF
    Large ultra-sensitive detector arrays are needed for present and future observatories for far infra-red, submillimeter wave (THz), and millimeter wave astronomy. With increasing array size, it is increasingly important to control stray radiation inside the detector chips themselves, the surface wave. We demonstrate this effect with focal plane arrays of 880 lens-antenna coupled Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field measurements of the MKID optical response versus the position on the array of a reimaged optical source. We demonstrate that the optical response of a detector in these arrays saturates off-pixel at the 30\sim-30 dB level compared to the peak pixel response. The result is that the power detected from a point source at the pixel position is almost identical to the stray response integrated over the chip area. With such a contribution, it would be impossible to measure extended sources, while the point source sensitivity is degraded due to an increase of the stray loading. However, we show that by incorporating an on-chip stray light absorber, the surface wave contribution is reduced by a factor >>10. With the on-chip stray light absorber the point source response is close to simulations down to the 35\sim-35 dB level, the simulation based on an ideal Gaussian illumination of the optics. In addition, as a crosscheck we show that the extended source response of a single pixel in the array with the absorbing grid is in agreement with the integral of the point source measurements.Comment: accepted for publication in IEEE Transactions on Terahertz Science and Technolog

    MKID development for SuperSpec: an on-chip, mm-wave, filter-bank spectrometer

    Get PDF
    SuperSpec is an ultra-compact spectrometer-on-a-chip for millimeter and submillimeter wavelength astronomy. Its very small size, wide spectral bandwidth, and highly multiplexed readout will enable construction of powerful multibeam spectrometers for high-redshift observations. The spectrometer consists of a horn-coupled microstrip feedline, a bank of narrow-band superconducting resonator filters that provide spectral selectivity, and Kinetic Inductance Detectors (KIDs) that detect the power admitted by each filter resonator. The design is realized using thin-film lithographic structures on a silicon wafer. The mm-wave microstrip feedline and spectral filters of the first prototype are designed to operate in the band from 195-310 GHz and are fabricated from niobium with at Tc of 9.2K. The KIDs are designed to operate at hundreds of MHz and are fabricated from titanium nitride with a Tc of 2K. Radiation incident on the horn travels along the mm-wave microstrip, passes through the frequency-selective filter, and is finally absorbed by the corresponding KID where it causes a measurable shift in the resonant frequency. In this proceedings, we present the design of the KIDs employed in SuperSpec and the results of initial laboratory testing of a prototype device. We will also briefly describe the ongoing development of a demonstration instrument that will consist of two 500-channel, R=700 spectrometers, one operating in the 1-mm atmospheric window and the other covering the 650 and 850 micron bands.Comment: As submitted, except that "in prep" references have been update

    Eliminating stray radiation inside large area imaging arrays

    Full text link
    With increasing array size, it is increasingly important to control stray radiation inside the detector chips themselves. We demonstrate this effect with focal plane arrays of absorber coupled Lumped Element microwave Kinetic Inductance Detectors (LEKIDs) and lens-antenna coupled distributed quarter wavelength Microwave Kinetic Inductance Detectors (MKIDs). In these arrays the response from a point source at the pixel position is at a similar level to the stray response integrated over the entire chip area. For the antenna coupled arrays, we show that this effect can be suppressed by incorporating an on-chip stray light absorber. A similar method should be possible with the LEKID array, especially when they are lens coupled.Comment: arXiv admin note: substantial text overlap with arXiv:1707.0214

    The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    Get PDF
    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice this is the first measurement of the frequency dependence of the quasiparticle creation efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.We would like to thank Jan Barkhof for help with the FTS calibration. This work was in part supported by ERC starting Grant Nos. ERC-2009-StG and 240602 TFPA. T. M. Klapwijk acknowledges financial support from the Ministry of Science and Education of Russia under Contract No. 14.B25.31.0007 and from the European Research Council Advanced Grant No. 339306 (METIQUM). P. J. de Visser acknowledges support from a Niels Stensen Fellowship.This is the author accepted manuscript. The final version is available from AIP via http://dx.doi.org/10.1063/1.492309

    BICEP2 II: Experiment and Three-Year Data Set

    Full text link
    We report on the design and performance of the BICEP2 instrument and on its three-year data set. BICEP2 was designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 1 to 5 degrees (\ell=40-200), near the expected peak of the B-mode polarization signature of primordial gravitational waves from cosmic inflation. Measuring B-modes requires dramatic improvements in sensitivity combined with exquisite control of systematics. The BICEP2 telescope observed from the South Pole with a 26~cm aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new detector design in which beam-defining slot antenna arrays couple to transition-edge sensor (TES) bolometers, all fabricated on a common substrate. The antenna-coupled TES detectors supported scalable fabrication and multiplexed readout that allowed BICEP2 to achieve a high detector count of 500 bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree angular scales. After optimization of detector and readout parameters, BICEP2 achieved an instrument noise-equivalent temperature of 15.8 μ\muK sqrt(s). The full data set reached Stokes Q and U map depths of 87.2 nK in square-degree pixels (5.2 μ\muK arcmin) over an effective area of 384 square degrees within a 1000 square degree field. These are the deepest CMB polarization maps at degree angular scales to date. The power spectrum analysis presented in a companion paper has resulted in a significant detection of B-mode polarization at degree scales.Comment: 30 pages, 24 figure
    corecore