2,067 research outputs found
Ultimate Intelligence Part I: Physical Completeness and Objectivity of Induction
We propose that Solomonoff induction is complete in the physical sense via
several strong physical arguments. We also argue that Solomonoff induction is
fully applicable to quantum mechanics. We show how to choose an objective
reference machine for universal induction by defining a physical message
complexity and physical message probability, and argue that this choice
dissolves some well-known objections to universal induction. We also introduce
many more variants of physical message complexity based on energy and action,
and discuss the ramifications of our proposals.Comment: Under review at AGI-2015 conference. An early draft was submitted to
ALT-2014. This paper is now being split into two papers, one philosophical,
and one more technical. We intend that all installments of the paper series
will be on the arxi
Measuring Coverage of Prolog Programs Using Mutation Testing
Testing is an important aspect in professional software development, both to
avoid and identify bugs as well as to increase maintainability. However,
increasing the number of tests beyond a reasonable amount hinders development
progress. To decide on the completeness of a test suite, many approaches to
assert test coverage have been suggested. Yet, frameworks for logic programs
remain scarce.
In this paper, we introduce a framework for Prolog programs measuring test
coverage using mutations. We elaborate the main ideas of mutation testing and
transfer them to logic programs. To do so, we discuss the usefulness of
different mutations in the context of Prolog and empirically evaluate them in a
new mutation testing framework on different examples.Comment: 16 pages, Accepted for presentation in WFLP 201
Topics in Quantum Computers
I provide an introduction to quantum computers, describing how they might be
realized using language accessible to a solid state physicist. A listing of the
minimal requirements for creating a quantum computer is given. I also discuss
several recent developments in the area of quantum error correction, a subject
of importance not only to quantum computation, but also to some aspects of the
foundations of quantum theory.Comment: 22 pages, Latex, 1 eps figure, Paper to be published in "Mesoscopic
Electron Transport", edited by L. Kowenhoven, G. Schoen and L. Sohn, NATO ASI
Series E, Kluwer Ac. Publ., Dordrecht. v2: typos in refrences fixe
Designing spin-1 lattice models using polar molecules
We describe how to design a large class of always on spin-1 interactions
between polar molecules trapped in an optical lattice. The spin degrees of
freedom correspond to the hyperfine levels of a ro-vibrational ground state
molecule. Interactions are induced using a microwave field to mix ground states
in one hyperfine manifold with the spin entangled dipole-dipole coupled excited
states. Using multiple fields anistropic models in one, two, or three
dimensions, can be built with tunable spatial range. An illustrative example in
one dimension is the generalized Haldane model, which at a specific parameter
has a gapped valence bond solid ground state. The interaction strengths are
large compared to decoherence rates and should allow for probing the rich phase
structure of strongly correlated systems, including dimerized and gapped
phases.Comment: 24 pages, 5 figure
Experimental Vacuum Squeezing in Rubidium Vapor via Self-Rotation
We report the generation of optical squeezed vacuum states by means of
polarization self-rotation in rubidium vapor following a proposal by Matsko et
al. [Phys. Rev. A 66, 043815 (2002)]. The experimental setup, involving in
essence just a diode laser and a heated rubidium gas cell, is simple and easily
scalable. A squeezing of 0.85+-0.05 dB was achieved
Continuous Variable Quantum Cryptography using Two-Way Quantum Communication
Quantum cryptography has been recently extended to continuous variable
systems, e.g., the bosonic modes of the electromagnetic field. In particular,
several cryptographic protocols have been proposed and experimentally
implemented using bosonic modes with Gaussian statistics. Such protocols have
shown the possibility of reaching very high secret-key rates, even in the
presence of strong losses in the quantum communication channel. Despite this
robustness to loss, their security can be affected by more general attacks
where extra Gaussian noise is introduced by the eavesdropper. In this general
scenario we show a "hardware solution" for enhancing the security thresholds of
these protocols. This is possible by extending them to a two-way quantum
communication where subsequent uses of the quantum channel are suitably
combined. In the resulting two-way schemes, one of the honest parties assists
the secret encoding of the other with the chance of a non-trivial superadditive
enhancement of the security thresholds. Such results enable the extension of
quantum cryptography to more complex quantum communications.Comment: 12 pages, 7 figures, REVTe
Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code
A fundamental requirement for enabling fault-tolerant quantum information
processing is an efficient quantum error-correcting code (QECC) that robustly
protects the involved fragile quantum states from their environment. Just as
classical error-correcting codes are indispensible in today's information
technologies, it is believed that QECC will play a similarly crucial role in
tomorrow's quantum information systems. Here, we report on the first
experimental demonstration of a quantum erasure-correcting code that overcomes
the devastating effect of photon losses. Whereas {\it errors} translate, in an
information theoretic language, the noise affecting a transmission line, {\it
erasures} correspond to the in-line probabilistic loss of photons. Our quantum
code protects a four-mode entangled mesoscopic state of light against erasures,
and its associated encoding and decoding operations only require linear optics
and Gaussian resources. Since in-line attenuation is generally the strongest
limitation to quantum communication, much more than noise, such an
erasure-correcting code provides a new tool for establishing quantum optical
coherence over longer distances. We investigate two approaches for
circumventing in-line losses using this code, and demonstrate that both
approaches exhibit transmission fidelities beyond what is possible by classical
means.Comment: 5 pages, 4 figure
Motion-light parametric amplifier and entanglement distributor
We propose a scheme for entangling the motional mode of a trapped atom with a
propagating light field via a cavity-mediated parametric interaction. We then
show that if this light field is subsequently coupled to a second distant atom
via a cavity-mediated linear-mixing interaction, it is possible to transfer the
entanglement from the light beam to the motional mode of the second atom to
create an EPR-type entangled state of the positions and momenta of two
distantly-separated atoms.Comment: 9 pages, 8 figures, REVTe
5D gravity and the discrepant G measurements
It is shown that 5D Kaluza-Klein theory stabilized by an external bulk scalar
field may solve the discrepant laboratory G measurements. This is achieved by
an effective coupling between gravitation and the geomagnetic field.
Experimental considerations are also addressed.Comment: 13 pages, to be published in: Proceedings of the 18th Course of the
School on Cosmology and Gravitation: The gravitational Constant. Generalized
gravitational theories and experiments (30 April-10 May 2003, Erice). Ed. by
G. T. Gillies, V. N. Melnikov and V. de Sabbata, (Kluwer), 13pp. (in print)
(2003
Gaussian bosonic synergy: quantum communication via realistic channels of zero quantum capacity
As with classical information, error-correcting codes enable reliable
transmission of quantum information through noisy or lossy channels. In
contrast to the classical theory, imperfect quantum channels exhibit a strong
kind of synergy: there exist pairs of discrete memoryless quantum channels,
each of zero quantum capacity, which acquire positive quantum capacity when
used together. Here we show that this "superactivation" phenomenon also occurs
in the more realistic setting of optical channels with attenuation and Gaussian
noise. This paves the way for its experimental realization and application in
real-world communications systems.Comment: 5 pages, 4 figures, one appendi
- …
