1,256 research outputs found
A Formalization of the Theorem of Existence of First-Order Most General Unifiers
This work presents a formalization of the theorem of existence of most
general unifiers in first-order signatures in the higher-order proof assistant
PVS. The distinguishing feature of this formalization is that it remains close
to the textbook proofs that are based on proving the correctness of the
well-known Robinson's first-order unification algorithm. The formalization was
applied inside a PVS development for term rewriting systems that provides a
complete formalization of the Knuth-Bendix Critical Pair theorem, among other
relevant theorems of the theory of rewriting. In addition, the formalization
methodology has been proved of practical use in order to verify the correctness
of unification algorithms in the style of the original Robinson's unification
algorithm.Comment: In Proceedings LSFA 2011, arXiv:1203.542
Electromigration-Induced Flow of Islands and Voids on the Cu(001) Surface
Electromigration-induced flow of islands and voids on the Cu(001) surface is
studied at the atomic scale. The basic drift mechanisms are identified using a
complete set of energy barriers for adatom hopping on the Cu(001) surface,
combined with kinetic Monte Carlo simulations. The energy barriers are
calculated by the embedded atom method, and parameterized using a simple model.
The dependence of the flow on the temperature, the size of the clusters, and
the strength of the applied field is obtained. For both islands and voids it is
found that edge diffusion is the dominant mass-transport mechanism. The rate
limiting steps are identified. For both islands and voids they involve
detachment of atoms from corners into the adjacent edge. The energy barriers
for these moves are found to be in good agreement with the activation energy
for island/void drift obtained from Arrhenius analysis of the simulation
results. The relevance of the results to other FCC(001) metal surfaces and
their experimental implications are discussed.Comment: 9 pages, 13 ps figure
Perfect state distinguishability and computational speedups with postselected closed timelike curves
Bennett and Schumacher's postselected quantum teleportation is a model of
closed timelike curves (CTCs) that leads to results physically different from
Deutsch's model. We show that even a single qubit passing through a
postselected CTC (P-CTC) is sufficient to do any postselected quantum
measurement, and we discuss an important difference between "Deutschian" CTCs
(D-CTCs) and P-CTCs in which the future existence of a P-CTC might affect the
present outcome of an experiment. Then, based on a suggestion of Bennett and
Smith, we explicitly show how a party assisted by P-CTCs can distinguish a set
of linearly independent quantum states, and we prove that it is not possible
for such a party to distinguish a set of linearly dependent states. The power
of P-CTCs is thus weaker than that of D-CTCs because the Holevo bound still
applies to circuits using them regardless of their ability to conspire in
violating the uncertainty principle. We then discuss how different notions of a
quantum mixture that are indistinguishable in linear quantum mechanics lead to
dramatically differing conclusions in a nonlinear quantum mechanics involving
P-CTCs. Finally, we give explicit circuit constructions that can efficiently
factor integers, efficiently solve any decision problem in the intersection of
NP and coNP, and probabilistically solve any decision problem in NP. These
circuits accomplish these tasks with just one qubit traveling back in time, and
they exploit the ability of postselected closed timelike curves to create
grandfather paradoxes for invalid answers.Comment: 15 pages, 4 figures; Foundations of Physics (2011
Revisiting consistency conditions for quantum states of systems on closed timelike curves: an epistemic perspective
There has been considerable recent interest in the consequences of closed
timelike curves (CTCs) for the dynamics of quantum mechanical systems. A vast
majority of research into this area makes use of the dynamical equations
developed by Deutsch, which were developed from a consistency condition that
assumes that mixed quantum states uniquely describe the physical state of a
system. We criticise this choice of consistency condition from an epistemic
perspective, i.e., a perspective in which the quantum state represents a state
of knowledge about a system. We demonstrate that directly applying Deutsch's
condition when mixed states are treated as representing an observer's knowledge
of a system can conceal time travel paradoxes from the observer, rather than
resolving them. To shed further light on the appropriate dynamics for quantum
systems traversing CTCs, we make use of a toy epistemic theory with a strictly
classical ontology due to Spekkens and show that, in contrast to the results of
Deutsch, many of the traditional paradoxical effects of time travel are
present.Comment: 10 pages, 6 figures, comments welcome; v2 added references and
clarified some points; v3 published versio
G\"odel Incompleteness and the Black Hole Information Paradox
Semiclassical reasoning suggests that the process by which an object
collapses into a black hole and then evaporates by emitting Hawking radiation
may destroy information, a problem often referred to as the black hole
information paradox. Further, there seems to be no unique prediction of where
the information about the collapsing body is localized. We propose that the
latter aspect of the paradox may be a manifestation of an inconsistent
self-reference in the semiclassical theory of black hole evolution. This
suggests the inadequacy of the semiclassical approach or, at worst, that
standard quantum mechanics and general relavity are fundamentally incompatible.
One option for the resolution for the paradox in the localization is to
identify the G\"odel-like incompleteness that corresponds to an imposition of
consistency, and introduce possibly new physics that supplies this
incompleteness. Another option is to modify the theory in such a way as to
prohibit self-reference. We discuss various possible scenarios to implement
these options, including eternally collapsing objects, black hole remnants,
black hole final states, and simple variants of semiclassical quantum gravity.Comment: 14 pages, 2 figures; revised according to journal requirement
Quantum Computing with Atomic Josephson Junction Arrays
We present a quantum computing scheme with atomic Josephson junction arrays.
The system consists of a small number of atoms with three internal states and
trapped in a far-off resonant optical lattice. Raman lasers provide the
"Josephson" tunneling, and the collision interaction between atoms represent
the "capacitive" couplings between the modes. The qubit states are collective
states of the atoms with opposite persistent currents. This system is closely
analogous to the superconducting flux qubit. Single qubit quantum logic gates
are performed by modulating the Raman couplings, while two-qubit gates result
from a tunnel coupling between neighboring wells. Readout is achieved by tuning
the Raman coupling adiabatically between the Josephson regime to the Rabi
regime, followed by a detection of atoms in internal electronic states.
Decoherence mechanisms are studied in detail promising a high ratio between the
decoherence time and the gate operation time.Comment: 7 figure
Simple deterministic dynamical systems with fractal diffusion coefficients
We analyze a simple model of deterministic diffusion. The model consists of a
one-dimensional periodic array of scatterers in which point particles move from
cell to cell as defined by a piecewise linear map. The microscopic chaotic
scattering process of the map can be changed by a control parameter. This
induces a parameter dependence for the macroscopic diffusion coefficient. We
calculate the diffusion coefficent and the largest eigenmodes of the system by
using Markov partitions and by solving the eigenvalue problems of respective
topological transition matrices. For different boundary conditions we find that
the largest eigenmodes of the map match to the ones of the simple
phenomenological diffusion equation. Our main result is that the difffusion
coefficient exhibits a fractal structure by varying the system parameter. To
understand the origin of this fractal structure, we give qualitative and
quantitative arguments. These arguments relate the sequence of oscillations in
the strength of the parameter-dependent diffusion coefficient to the
microscopic coupling of the single scatterers which changes by varying the
control parameter.Comment: 28 pages (revtex), 12 figures (postscript), submitted to Phys. Rev.
Selective quantum evolution of a qubit state due to continuous measurement
We consider a two-level quantum system (qubit) which is continuously measured
by a detector. The information provided by the detector is taken into account
to describe the evolution during a particular realization of measurement
process. We discuss the Bayesian formalism for such ``selective'' evolution of
an individual qubit and apply it to several solid-state setups. In particular,
we show how to suppress the qubit decoherence using continuous measurement and
the feedback loop.Comment: 15 pages (including 9 figures
The status of GEO 600
The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
- …
