2,932 research outputs found
Primary renal embryonal rhabdomyosarcoma in adults: a case report and review of the literature.
Adult renal rhabdomyosarcoma is a rare subtype of renal sarcoma. We present a case of a renal mass treated with radical nephrectomy that subsequently was shown to be renal rhabdomyosarcoma. We discuss the clinical presentation, imaging findings, and histology for this case and review the available literature
Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code
A fundamental requirement for enabling fault-tolerant quantum information
processing is an efficient quantum error-correcting code (QECC) that robustly
protects the involved fragile quantum states from their environment. Just as
classical error-correcting codes are indispensible in today's information
technologies, it is believed that QECC will play a similarly crucial role in
tomorrow's quantum information systems. Here, we report on the first
experimental demonstration of a quantum erasure-correcting code that overcomes
the devastating effect of photon losses. Whereas {\it errors} translate, in an
information theoretic language, the noise affecting a transmission line, {\it
erasures} correspond to the in-line probabilistic loss of photons. Our quantum
code protects a four-mode entangled mesoscopic state of light against erasures,
and its associated encoding and decoding operations only require linear optics
and Gaussian resources. Since in-line attenuation is generally the strongest
limitation to quantum communication, much more than noise, such an
erasure-correcting code provides a new tool for establishing quantum optical
coherence over longer distances. We investigate two approaches for
circumventing in-line losses using this code, and demonstrate that both
approaches exhibit transmission fidelities beyond what is possible by classical
means.Comment: 5 pages, 4 figure
Gaussian bosonic synergy: quantum communication via realistic channels of zero quantum capacity
As with classical information, error-correcting codes enable reliable
transmission of quantum information through noisy or lossy channels. In
contrast to the classical theory, imperfect quantum channels exhibit a strong
kind of synergy: there exist pairs of discrete memoryless quantum channels,
each of zero quantum capacity, which acquire positive quantum capacity when
used together. Here we show that this "superactivation" phenomenon also occurs
in the more realistic setting of optical channels with attenuation and Gaussian
noise. This paves the way for its experimental realization and application in
real-world communications systems.Comment: 5 pages, 4 figures, one appendi
Identification of Giardia lamblia DHHC Proteins and the Role of Protein S-palmitoylation in the Encystation Process
Protein S-palmitoylation, a hydrophobic post-translational modification, is performed by protein acyltransferases that have a common DHHC Cys-rich domain (DHHC proteins), and provides a regulatory switch for protein membrane association. In this work, we analyzed the presence of DHHC proteins in the protozoa parasite Giardia lamblia and the function of the reversible S-palmitoylation of proteins during parasite differentiation into cyst. Two specific events were observed: encysting cells displayed a larger amount of palmitoylated proteins, and parasites treated with palmitoylation inhibitors produced a reduced number of mature cysts. With bioinformatics tools, we found nine DHHC proteins, potential protein acyltransferases, in the Giardia proteome. These proteins displayed a conserved structure when compared to different organisms and are distributed in different monophyletic clades. Although all Giardia DHHC proteins were found to be present in trophozoites and encysting cells, these proteins showed a different intracellular localization in trophozoites and seemed to be differently involved in the encystation process when they were overexpressed. dhhc transgenic parasites showed a different pattern of cyst wall protein expression and yielded different amounts of mature cysts when they were induced to encyst. Our findings disclosed some important issues regarding the role of DHHC proteins and palmitoylation during Giardia encystation.Fil: Merino, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Zamponi, Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Vranych, Cecilia Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Touz, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; ArgentinaFil: Ropolo, Andrea Silvana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra. Universidad Nacional de Córdoba. Instituto de Investigación Médica Mercedes y Martín Ferreyra; Argentin
Evaluation of point-of-care tests for detecting microalbuminuria in diabetic patients
Background: Microalbuminuria, the presence of low levels of albumin in the urine, indicates renal damage and is recognised as a risk factor for the progression of renal and cardiovascular disease. Several international scientific bodies recommend microalbuminuria screening. Point-of-care testing (POCT) of microalbuminuria allows immediate identification of risk, and monitoring of treatment effects. In this study, two POCT instruments were evaluated as microalbuminuria screening methods. Method: Spot urine specimens from diabetic patients were analysed with the quantitative HemoCue® urine albumin analyser (n = 245), and the semiquantitative Clinitek® microalbumin urine dipstick (n = 204). These results were compared to the respective data for laboratory-determined albumin (nephelometry), creatinine (modified Jaffe) and albumin-to-creatinine ratio (ACR). Results: Linear regression analysis demonstrated a good correlation for the HemoCue® urine albumin with the laboratorydetermined albumin concentration (y = 0.8557x + 0.2487y, r = 0.97). The sensitivities for the HemoCue® and Clinitek® POCT systems were 79.6% and 83.8%, and the specificities 97.1% and 93.8% respectively. Positive and negative predictive values for the HemoCue® were 95.6% and 85.8%, and were 88.6% and 91.0% the Clinitek®. The repeatability of both instruments was excellent. Both instruments are easy to use, and more cost-effective than the laboratory methods for albumin and ACR. Conclusion: Both the HemoCue® and the Clinitek® microalbumin POCT systems for albuminuria are easy to use and inexpensive, and are adequately accurate as a screening method. Although the HemoCue® POCT system measures only urine albumin concentration, its sensitivity and specificity compared well with that of the Clinitek® POCT system, which determines the ACR.Keywords: microalbuminuria, point-of-care testing, HemoCue®, Clinitek®, urinary albumin excretio
Gaussian Hypothesis Testing and Quantum Illumination
© 2017 American Physical Society. Quantum hypothesis testing is one of the most basic tasks in quantum information theory and has fundamental links with quantum communication and estimation theory. In this paper, we establish a formula that characterizes the decay rate of the minimal type-II error probability in a quantum hypothesis test of two Gaussian states given a fixed constraint on the type-I error probability. This formula is a direct function of the mean vectors and covariance matrices of the quantum Gaussian states in question. We give an application to quantum illumination, which is the task of determining whether there is a low-reflectivity object embedded in a target region with a bright thermal-noise bath. For the asymmetric-error setting, we find that a quantum illumination transmitter can achieve an error probability exponent stronger than a coherent-state transmitter of the same mean photon number, and furthermore, that it requires far fewer trials to do so. This occurs when the background thermal noise is either low or bright, which means that a quantum advantage is even easier to witness than in the symmetric-error setting because it occurs for a larger range of parameters. Going forward from here, we expect our formula to have applications in settings well beyond those considered in this paper, especially to quantum communication tasks involving quantum Gaussian channels
CMT subtypes and disease burden in patients enrolled in the Inherited Neuropathies Consortium natural history study: a cross-sectional analysis
BACKGROUND: The international Inherited Neuropathy
Consortium (INC) was created with the goal of obtaining
much needed natural history data for patients with
Charcot-Marie-Tooth (CMT) disease. We analysed clinical
and genetic data from patients in the INC to determine
the distribution of CMT subtypes and the clinical
impairment associated with them.
METHODS: We analysed data from 1652 patients
evaluated at 13 INC centres. The distribution of CMT
subtypes and pathogenic genetic mutations were
determined. The disease burden of all the mutations was
assessed by the CMT Neuropathy Score (CMTNS) and
CMT Examination Score (CMTES).
RESULTS: 997 of the 1652 patients (60.4%) received
a genetic diagnosis. The most common CMT subtypes
were CMT1A/PMP22 duplication, CMT1X/GJB1
mutation, CMT2A/MFN2 mutation, CMT1B/MPZ
mutation, and hereditary neuropathy with liability to
pressure palsy/PMP22 deletion. These five subtypes of
CMT accounted for 89.2% of all genetically confirmed
mutations. Mean CMTNS for some but not all subtypes
were similar to those previously reported.
CONCLUSIONS: Our findings confirm that large numbers
of patients with a representative variety of CMT subtypes
have been enrolled and that the frequency of achieving
a molecular diagnosis and distribution of the CMT
subtypes reflects those previously reported. Measures of
severity are similar, though not identical, to results from
smaller series. This study confirms that it is possible to
assess patients in a uniform way between international
centres, which is critical for the planned natural history
study and future clinical trials. These data will provide a
representative baseline for longitudinal studies of CMT.
CLINICAL TRIAL REGISTRATION ID NUMBER: NCT0119307
The C-Terminal Domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC Is a Lectin-Like Carbohydrate Binding Module
The D-arabinan-containing polymers arabinogalactan (AG) and lipoarabinomannan (LAM) are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf) transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbCCT) encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM). Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbCCT contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985) at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbCCT, linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis. Author Summary Top Tuberculosis (TB), an infectious disease caused by the bacillus Mycobacterium tuberculosis, burdens large swaths of the world population. Treatment of active TB typically requires administration of an antibiotic cocktail over several months that includes the drug ethambutol. This front line compound inhibits a set of arabinosyltransferase enzymes, called EmbA, EmbB and EmbC, which are critical for the synthesis of arabinan, a vital polysaccharide in the pathogen's unique cell envelope. How precisely ethambutol inhibits arabinosyltransferase activity is not clear, in part because structural information of its pharmacological targets has been elusive. Here, we report the high-resolution structure of the C-terminal domain of the ethambutol-target EmbC, a 390-amino acid fragment responsible for acceptor substrate recognition. Combining the X-ray crystallographic analysis with structural comparisons, site-directed mutagenesis, activity and ligand binding assays, we identified two regions in the C-terminal domain of EmbC that are capable of binding acceptor substrate mimics and are critical for activity of the full-length enzyme. Our results begin to define structure-function relationships in a family of structurally uncharacterised membrane-embedded glycosyltransferases, which are an important target for tuberculosis therapy
Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers
This work was supported by the Fundação Carlos Chagas de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), grants E-26/202.974/2015 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grants 229755/2013-5, Brazil. LMLB is a senior research fellow of CNPq and Faperj. NG acknowledged support from the Wellcome Trust (Trust (097377, 101873, 200208) and MRC Centre for Medical Mycology (MR/N006364/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Breakdown of the adiabatic limit in low dimensional gapless systems
It is generally believed that a generic system can be reversibly transformed
from one state into another by sufficiently slow change of parameters. A
standard argument favoring this assertion is based on a possibility to expand
the energy or the entropy of the system into the Taylor series in the ramp
speed. Here we show that this argumentation is only valid in high enough
dimensions and can break down in low-dimensional gapless systems. We identify
three generic regimes of a system response to a slow ramp: (A) mean-field, (B)
non-analytic, and (C) non-adiabatic. In the last regime the limits of the ramp
speed going to zero and the system size going to infinity do not commute and
the adiabatic process does not exist in the thermodynamic limit. We support our
results by numerical simulations. Our findings can be relevant to
condensed-matter, atomic physics, quantum computing, quantum optics, cosmology
and others.Comment: 11 pages, 5 figures, to appear in Nature Physics (originally
submitted version
- …
