54 research outputs found
The Self-Powered Detector Simulation ‘MATiSSe’ Toolbox applied to SPNDs for severe accident monitoring in PWRs
Calculations to Support On-line Neutron Spectrum Adjustment by Measurements with Miniature Fission Chambers in the JSI TRIGA Reactor
Preliminary calculations were performed with the aim to establish optimal experimental conditions for the measurement campaign within the collaboration between the Jožef Stefan Institute (JSI) and Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA Cadarache). The goal of the project is to additionally characterize the neutron spectruminside the JSI TRIGA reactor core with focus on the measurement epi-thermal and fast part of the spectrum. Measurements will be performed with fission chambers containing different fissile materials (235U, 237Np and 242Pu) covered with thermal neutron filters (Cd and Gd). The changes in the detected signal and neutron flux spectrum with and without transmission filter were studied. Additional effort was put into evaluation of the effect of the filter geometry (e.g. opening on the top end of the filter) on the detector signal. After the analysis of the scoping calculations it was concluded to position the experiment in the outside core ring inside one of the empty fuel element positions
Characterization of gamma field in the JSI TRIGA reactor
Research reactors such as the “Jožzef Stefan” Institute TRIGA reactor have primarily been designed for experimentation and sample irradiation with neutrons. However recent developments in incorporating additional instrumentation for nuclear power plant support and with novel high flux material testing reactor designs, γ field characterization has become of great interest for the characterization of the changes in operational parameters of electronic devices and for the evaluation of γ heating of MTR’s structural materials in a representative reactor Γ spectrum.
In this paper, we present ongoing work on γ field characterization both experimentally, by performing γ field measurements, and by simulations, using Monte Carlo particle transport codes in conjunction with R2S methodology for delayed γ field characterization
Reactor Pulse Operation for Nuclear Instrumentation Detector Testing – Preparation of a Dedicated Experimental Campaign at the JSI TRIGA Reactor
The availability of neutron fields with a high neutron flux, suitable for irradiation testing of nuclear instrumentation detectors relevant for applications in nuclear facilities such as material testing reactors (MTRs), nuclear power reactors and future fusion reactors is becoming increasingly limited. Over the last several years there has been increased interest in the experimental capabilities of the 250 kW Jožef Stefan Institute (JSI) TRIGA research reactor for such applications, however, the maximal achievable neutron flux in steady-state operation mode falls short of MTR-relevant conditions. The JSI TRIGA reactor can also operate in pulse mode, with a maximal achievable peak power of approximately 1 GW, for a duration of a few ms. A collaboration project between the JSI and the French Atomic and Alternative Energy Commission (CEA) was initiated to investigate absolute neutron flux measurements at very high neutron flux levels in reactor pulse operation. Such measurements will be made possible by special CEA-developed miniature fission chambers and modern data acquisition systems, supported by the JSI TRIGA instrumentation and activation dosimetry. Additionally, measurements of the intensity of Cherenkov light are proposed and being investigated as an alternative experimental method. This paper presents the preparatory activities for an exhaustive experimental campaign, which were carried out in 2019-2020, consisting of test measurements with not fully appropriate fission chambers, activation dosimetry and silicon photomultipliers (SiPMs) The presented results provide useful and promising experimental indications relevant for the design of the experimental campaign
The Self-Powered Detector Simulation ‘MATiSSe’ Toolbox applied to SPNDs for severe accident monitoring in PWRs
In the framework of the French National Research Agency program on nuclear safety and radioprotection, the ‘DIstributed Sensing for COrium Monitoring and Safety’ project aims at developing innovative instrumentation for corium monitoring in case of severe accident in a Pressurized Water nuclear Reactor. Among others, a new under-vessel instrumentation based on Self-Powered Neutron Detectors is developed using a numerical simulation toolbox, named ‘MATiSSe’. The CEA Instrumentation Sensors and Dosimetry Lab developed MATiSSe since 2010 for Self-Powered Neutron Detectors material selection and geometry design, as well as for their respective partial neutron and gamma sensitivity calculations. MATiSSe is based on a comprehensive model of neutron and gamma interactions which take place in Selfpowered neutron detector components using the MCNP6 Monte Carlo code. As member of the project consortium, the THERMOCOAX SAS Company is currently manufacturing some instrumented pole prototypes to be tested in 2017. The full severe accident monitoring equipment, including the standalone low current acquisition system, will be tested during a joined CEA-THERMOCOAX experimental campaign in some realistic irradiation conditions, in the Slovenian TRIGA Mark II research reactor
The Self-Powered Detector Simulation ‘MATiSSe’ Toolbox applied to SPNDs for severe accident monitoring in PWRs
International audienceIn the framework of the French National Research Agency program on nuclear safety and radioprotection, the ‘DIstributed Sensing for COrium Monitoring and Safety’ project aims at developing innovative instrumentation for corium monitoring in case of severe accident in a Pressurized Water nuclear Reactor. Among others, a new under-vessel instrumentation based on Self-Powered Neutron Detectors is developed using a numerical simulation toolbox, named ‘MATiSSe’. The CEA Instrumentation Sensors and Dosimetry Lab developed MATiSSe since 2010 for Self-Powered Neutron Detectors material selection and geometry design, as well as for their respective partial neutron and gamma sensitivity calculations. MATiSSe is based on a comprehensive model of neutron and gamma interactions which take place in Selfpowered neutron detector components using the MCNP6 Monte Carlo code. As member of the project consortium, the THERMOCOAX SAS Company is currently manufacturing some instrumented pole prototypes to be tested in 2017. The full severe accident monitoring equipment, including the standalone low current acquisition system, will be tested during a joined CEA-THERMOCOAX experimental campaign in some realistic irradiation conditions, in the Slovenian TRIGA Mark II research reacto
Semi-Implicit Homogeneous Euler Differentiator for a Second-Order System: Validation on Real Data
International audienceIn this paper, a semi-implicit Euler approximation scheme is proposed for a second-order homogeneous differentiator. Compared to an explicit Euler approximation, it is well-known that implicit Euler approximation scheme offers better performances like reducing high frequency oscillations. However, the implicit Euler approximation scheme works well only when dealing with classical sliding mode differentiator. In order to keep advantages of implicit Euler approximation, when this approximation is applied in case of homogeneous differentiators, a semi-implicit Euler approximation is proposed for a second-order system. Validation on real data is conducted to highlight the well-founded of the proposed differentiation strategy
Reactor Pulse Operation for Nuclear Instrumentation Detector Testing – Preparation of a Dedicated Experimental Campaign at the JSI TRIGA Reactor
The availability of neutron fields with a high neutron flux, suitable for irradiation testing of nuclear instrumentation detectors relevant for applications in nuclear facilities such as material testing reactors (MTRs), nuclear power reactors and future fusion reactors is becoming increasingly limited. Over the last several years there has been increased interest in the experimental capabilities of the 250 kW Jožef Stefan Institute (JSI) TRIGA research reactor for such applications, however, the maximal achievable neutron flux in steady-state operation mode falls short of MTR-relevant conditions. The JSI TRIGA reactor can also operate in pulse mode, with a maximal achievable peak power of approximately 1 GW, for a duration of a few ms. A collaboration project between the JSI and the French Atomic and Alternative Energy Commission (CEA) was initiated to investigate absolute neutron flux measurements at very high neutron flux levels in reactor pulse operation. Such measurements will be made possible by special CEA-developed miniature fission chambers and modern data acquisition systems, supported by the JSI TRIGA instrumentation and activation dosimetry. Additionally, measurements of the intensity of Cherenkov light are proposed and being investigated as an alternative experimental method. This paper presents the preparatory activities for an exhaustive experimental campaign, which were carried out in 2019-2020, consisting of test measurements with not fully appropriate fission chambers, activation dosimetry and silicon photomultipliers (SiPMs) The presented results provide useful and promising experimental indications relevant for the design of the experimental campaign.</jats:p
Semi-Implicit Euler Discretization for Homogeneous Observer-based Control: one dimensional case
- …
