7 research outputs found

    Indoor CO2 direct air capture and utilization: Key strategies towards carbon neutrality

    No full text
    Direct air capture (DAC) is a promising technology that can help to remove carbon dioxide (CO2) from the air. One application of DAC is indoor CO2 direct air capture (iCO2-DAC). A wide range of materials with unique properties for CO2 capture have been investigated, including porous materials, zeolites, and metal-organic frameworks. The selection of suitable materials for iCO2-DAC depends on several factors, such as cost, CO2 adsorption capacity, and stability. The development of new materials with improved properties for iCO2-DAC is an active research area. The captured CO2 can serve as a renewable carbon source to produce biofuels for internal use (e.g., for heating purposes), decreasing the environmental impact of buildings. This review article highlights the importance of iCO2-DAC to improve indoor air quality in buildings and boost the circular economy. We discuss the available carbon capture technologies and materials, discussing their properties and focusing on those potentially applicable to indoor environments. We also provide a hypothetic scenario where CO2 is captured from different indoor environments and transformed into sustainable fuels by using an emerging carbon capture and utilization technology (microbial electrosynthesis). Finally, we evaluate the economic feasibility of such an innovative approach in comparison to the use of traditional, fossil-based fuels

    Mortality after surgery in Europe: a 7 day cohort study

    Get PDF
    SummaryBackgroundClinical outcomes after major surgery are poorly described at the national level. Evidence of heterogeneity between hospitals and health-care systems suggests potential to improve care for patients but this potential remains unconfirmed. The European Surgical Outcomes Study was an international study designed to assess outcomes after non-cardiac surgery in Europe.MethodsWe did this 7 day cohort study between April 4 and April 11, 2011. We collected data describing consecutive patients aged 16 years and older undergoing inpatient non-cardiac surgery in 498 hospitals across 28 European nations. Patients were followed up for a maximum of 60 days. The primary endpoint was in-hospital mortality. Secondary outcome measures were duration of hospital stay and admission to critical care. We used χ2 and Fisher's exact tests to compare categorical variables and the t test or the Mann-Whitney U test to compare continuous variables. Significance was set at p<0·05. We constructed multilevel logistic regression models to adjust for the differences in mortality rates between countries.FindingsWe included 46 539 patients, of whom 1855 (4%) died before hospital discharge. 3599 (8%) patients were admitted to critical care after surgery with a median length of stay of 1·2 days (IQR 0·9–3·6). 1358 (73%) patients who died were not admitted to critical care at any stage after surgery. Crude mortality rates varied widely between countries (from 1·2% [95% CI 0·0–3·0] for Iceland to 21·5% [16·9–26·2] for Latvia). After adjustment for confounding variables, important differences remained between countries when compared with the UK, the country with the largest dataset (OR range from 0·44 [95% CI 0·19–1·05; p=0·06] for Finland to 6·92 [2·37–20·27; p=0·0004] for Poland).InterpretationThe mortality rate for patients undergoing inpatient non-cardiac surgery was higher than anticipated. Variations in mortality between countries suggest the need for national and international strategies to improve care for this group of patients.FundingEuropean Society of Intensive Care Medicine, European Society of Anaesthesiology

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    International audienceIn 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    Aim The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. Methods This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. Results Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P &lt; 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. Conclusion One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    DElayed COloRectal cancer care during COVID-19 Pandemic (DECOR-19): Global perspective from an international survey

    No full text
    Background: The widespread nature of coronavirus disease 2019 (COVID-19) has been unprecedented. We sought to analyze its global impact with a survey on colorectal cancer care during the pandemic. Methods: The impact of coronavirus disease 2019 on preoperative assessment, elective surgery, and postoperative management of colorectal cancer patients was explored by a 35-item survey, which was distributed worldwide to members of surgical societies with an interest in colorectal cancer care. Respondents were divided into 2 comparator groups: (1) “delay” group: colorectal cancer care affected by the pandemic and (2) “no delay” group: unaltered colorectal cancer practice. Results: A total of 1,051 respondents from 84 countries completed the survey. No substantial differences in demographics were found between the delay (745, 70.9%) and no delay (306, 29.1%) groups. Suspension of multidisciplinary team meetings, staff members quarantined or relocated to coronavirus disease 2019 units, units fully dedicated to coronavirus disease 2019 care, and personal protective equipment not readily available were factors significantly associated to delays in endoscopy, radiology, surgery, histopathology, and prolonged chemoradiation therapy-to-surgery intervals. In the delay group, 48.9% of respondents reported a change in the initial surgical plan, and 26.3% reported a shift from elective to urgent operations. Recovery of colorectal cancer care was associated with the status of the outbreak. Practicing in coronavirus disease-free units, no change in operative slots and staff members not relocated to coronavirus disease 2019 units were statistically associated with unaltered colorectal cancer care in the no delay group, while the geographic distribution was not. Conclusion: Global changes in diagnostic and therapeutic colorectal cancer practices were evident. Changes were associated with differences in health care delivery systems, hospital's preparedness, resource availability, and local coronavirus disease 2019 prevalence rather than geographic factors. Strategic planning is required to optimize colorectal cancer care

    Observation and branching fraction measurement of the decay <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msubsup><mml:mi mathvariant="normal">Ξ</mml:mi><mml:mi>b</mml:mi><mml:mo>−</mml:mo></mml:msubsup><mml:mo stretchy="false">→</mml:mo><mml:msubsup><mml:mi mathvariant="normal">Λ</mml:mi><mml:mi>b</mml:mi><mml:mn>0</mml:mn></mml:msubsup><mml:msup><mml:mi>π</mml:mi><mml:mo>−</mml:mo></mml:msup></mml:math>

    Get PDF
    The decay Ξ−b → Λ0bπ− is observed using a proton-proton collision data sample collected at center-of-ffiffi mass energy ps ¼ 13 TeV with the LHCb detector, corresponding to an integrated luminosity of 5.5 fb−1. This process is mediated by the s → uūd quark-level transition, where the b quark in the Ξ−b baryon is a spectator in the decay. Averaging the results obtained using the two Λ0b decay modes, Λ0b → Λþc π− and Λ0b → Λþc π−πþπ−, the relative production ratio is measured to be ðfΞ−b =fΛ0 bÞBðΞ−b → Λ0bπ−Þ ¼ ð7.3 ± 0.8 ± 0.6Þ × 10−4. Here the uncertainties are statistical and systematic, respectively, and fΞ−b ðfΛ0 bÞ is the fragmentation fraction for a b quark into a Ξ−b (Λ0b) baryon. Using an independent measurement of fΞ− b =fΛ0 b, the branching fraction BðΞ−b → Λ0bπ−Þ ¼ ð0.89 ± 0.10 ± 0.07 ± 0.29Þ% is obtained, where the last uncertainty is due to the assumed SU(3) flavor symmetry in the determination of fΞ− b =fΛ0 b,
    corecore