10 research outputs found

    Correlation kinetic energy of many-electron systems: a modified Colle-Salvetti approach

    Full text link
    The Colle and Salvetti approach [Theoret. Chim. Acta, 37, 329 (1975)] to the calculation of the correlation energy of a system is modified in order to explicitly include into the theory the kinetic contribution to the correlation energy. This is achieved by deducing from a many electrons wave function, including the correlation effects via a Jastrow factor, an approximate expression of the one-electron reduced density matrix. Applying the latter to the homogeneous electron gas, an analytic expression of the correlation kinetic energy is derived. The total correlation energy of such a system is then deduced from its kinetic contribution inverting a standard procedure. At variance of the original Colle-Salvetti theory, the parameters entering in both the kinetic correlation and the total correlation energies are determined analytically, leading to a satisfactory agreement with the results of Perdew and Wang [Phys. Rev. B 45, 13244 (1992)]. The resulting (parameter-free) expressions give rise to a modified-local-density approximation that can be used in self-consistent density-functional calculations. We have performed such calculations for a large set of atoms and ions and we have found results for the correlation energies and for the ionization potentials which improve those of the standard local-density approximation.Comment: 26 page

    Continuous symmetry of C60 fullerene and its derivatives

    Full text link
    Conventionally, the Ih symmetry of fullerene C60 is accepted which is supported by numerous calculations. However, this conclusion results from the consideration of the molecule electron system, of its odd electrons in particular, in a close-shell approximation without taking the electron spin into account. Passing to the open-shell approximation has lead to both the energy and the symmetry lowering up to Ci. Seemingly contradicting to a high-symmetry pattern of experimental recording, particularly concerning the molecule electronic spectra, the finding is considered in the current paper from the continuous symmetry viewpoint. Exploiting both continuous symmetry measure and continuous symmetry content, was shown that formal Ci symmetry of the molecule is by 99.99% Ih. A similar continuous symmetry analysis of the fullerene monoderivatives gives a reasonable explanation of a large variety of their optical spectra patterns within the framework of the same C1 formal symmetry exhibiting a strong stability of the C60 skeleton.Comment: 11 pages. 5 figures. 6 table

    Advances in quantum chemistry

    No full text
    corecore