7,485 research outputs found

    Whole-body magnetic resonance imaging in the diagnosis and follow-up of multicentric infantile myofibromatosis: A case report

    Get PDF
    Myofibromatosis is an uncommon disorder of infancy, characterized by proliferation of myofibroblasts in solitary or multiple nodules. The clinical characteristics depend on the involved sites: Myofibromatosis may develop as a musculoskeletal form, with non-painful swellings and eventual mass effect symptoms, or as a generalized form with visceral involvement and organ failure. Prognosis and therapy vary between the abovementioned patterns. When there is no visceral involvement, the tumors may regress spontaneously; however, the visceral form may represent a lifethreatening condition with poor outcome and it requires aggressive management. Imaging assessment of disease spread is mandatory to determine diagnosis, prognosis and therapy. Due to the young age of the patients, a radiation-free evaluation is recommended. We herein describe a case of musculoskeletal myofibromatosis diagnosed in a 3-month-old male infant, investigated by serial wholebody magnetic resonance imaging (MRI) examination. The histological analysis and MRI characteristics enabled a correct diagnosis and organ involvement assessment with no radiation exposure. Moreover, whole-body MRI sequences provided a detailed evaluation of the disease within a short time frame, reducing the time of sedation, which is required to perform MRI in very young patients. Therefore, whole-body MRI was found to be accurate and safe in the diagnosis and follow-up of multicentric infantile myofibromatosis.Myofibromatosis is an uncommon disorder of infancy, characterized by proliferation of myofibroblasts in solitary or multiple nodules. The clinical characteristics depend on the involved sites: Myofibromatosis may develop as a musculoskeletal form, with non-painful swellings and eventual mass effect symptoms, or as a generalized form with visceral involvement and organ failure. Prognosis and therapy vary between the abovementioned patterns. When there is no visceral involvement, the tumors may regress spontaneously; however, the visceral form may represent a lifethreatening condition with poor outcome and it requires aggressive management. Imaging assessment of disease spread is mandatory to determine diagnosis, prognosis and therapy. Due to the young age of the patients, a radiation-free evaluation is recommended. We herein describe a case of musculoskeletal myofibromatosis diagnosed in a 3-month-old male infant, investigated by serial wholebody magnetic resonance imaging (MRI) examination. The histological analysis and MRI characteristics enabled a correct diagnosis and organ involvement assessment with no radiation exposure. Moreover, whole-body MRI sequences provided a detailed evaluation of the disease within a short time frame, reducing the time of sedation, which is required to perform MRI in very young patients. Therefore, whole-body MRI was found to be accurate and safe in the diagnosis and follow-up of multicentric infantile myofibromatosis

    Loss of histone macroH2A1 in hepatocellular carcinoma cells promotes paracrine-mediated chemoresistance and CD4+CD25+FoxP3+ regulatory T cells activation

    Get PDF
    Rationale: Loss of histone macroH2A1 induces appearance of cancer stem cells (CSCs)-like cells in hepatocellular carcinoma (HCC). How CSCs interact with the tumor microenvironment and the adaptive immune system is unclear. Methods: We screened aggressive human HCC for macroH2A1 and CD44 CSC marker expression. We also knocked down (KD) macroH2A1 in HCC cells, and performed integrated transcriptomic and secretomic analyses. Results: Human HCC showed low macroH2A1 and high CD44 expression compared to control tissues. MacroH2A1 KD CSC-like cells transferred paracrinally their chemoresistant properties to parental HCC cells. MacroH2A1 KD conditioned media transcriptionally reprogrammed parental HCC cells activated regulatory CD4+/CD25+/FoxP3+ T cells (Tregs). Conclusions: Loss of macroH2A1 in HCC cells drives cancer stem-cell propagation and evasion from immune surveillance

    Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is a deadly malignancy characterized at the epigenetic level by global DNA hypomethylation and focal hypermethylation on the promoter of tumor suppressor genes. In most cases it develops on a background of liver steatohepatitis, fibrosis, and cirrhosis. Guadecitabine (SGI-110) is a second-generation hypomethylating agent, which inhibits DNA methyltransferases. Guadecitabine is formulated as a dinucleotide of decitabine and deoxyguanosine that is resistant to cytidine deaminase (CDA) degradation and results in prolonged in vivo exposure to decitabine following small volume subcutaneous administration of guadecitabine. Here we found that guadecitabine is an effective demethylating agent and is able to prevent HCC progression in pre-clinical models. In a xenograft HCC HepG2 model, guadecitabine impeded tumor growth and inhibited angiogenesis, while it could not prevent liver fibrosis and inflammation in a mouse model of steatohepatitis. Demethylating efficacy of guadecitabine on LINE-1 elements was found to be the highest 8 d post-infusion in blood samples of mice. Analysis of a panel of human HCC vs. normal tissue revealed a signature of hypermethylated tumor suppressor genes (CDKN1A, CDKN2A, DLEC1, E2F1, GSTP1, OPCML, E2F1, RASSF1, RUNX3, and SOCS1) as detected by methylation-specific PCR. A pronounced demethylating effect of guadecitabine was obtained also in the promoters of a subset of tumor suppressors genes (CDKN2A, DLEC1, and RUNX3) in HepG2 and Huh-7 HCC cells. Finally, we analyzed the role of macroH2A1, a variant of histone H2A, an oncogene upregulated in human cirrhosis/HCC that synergizes with DNA methylation in suppressing tumor suppressor genes, and it prevents the inhibition of cell growth triggered by decitabine in HCC cells. Guadecitabine, in contrast to decitabine, blocked growth in HCC cells overexpressing macroH2A1 histones and with high CDA levels, despite being unable to fully demethylate CDKN2A, RUNX3, and DLEC1 promoters altered by macroH2A1. Collectively, our findings in human and mice models reveal novel epigenetic anti-HCC effects of guadecitabine, which might be effective specifically in advanced states of the disease

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    Deterministic diffusion fiber tracking improved by quantitative anisotropy

    Get PDF
    Diffusion MRI tractography has emerged as a useful and popular tool for mapping connections between brain regions. In this study, we examined the performance of quantitative anisotropy (QA) in facilitating deterministic fiber tracking. Two phantom studies were conducted. The first phantom study examined the susceptibility of fractional anisotropy (FA), generalized factional anisotropy (GFA), and QA to various partial volume effects. The second phantom study examined the spatial resolution of the FA-aided, GFA-aided, and QA-aided tractographies. An in vivo study was conducted to track the arcuate fasciculus, and two neurosurgeons blind to the acquisition and analysis settings were invited to identify false tracks. The performance of QA in assisting fiber tracking was compared with FA, GFA, and anatomical information from T 1-weighted images. Our first phantom study showed that QA is less sensitive to the partial volume effects of crossing fibers and free water, suggesting that it is a robust index. The second phantom study showed that the QA-aided tractography has better resolution than the FA-aided and GFA-aided tractography. Our in vivo study further showed that the QA-aided tractography outperforms the FA-aided, GFA-aided, and anatomy-aided tractographies. In the shell scheme (HARDI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 30.7%, 32.6%, and 24.45% of the false tracks, respectively, while the QA-aided tractography has 16.2%. In the grid scheme (DSI), the FA-aided, GFA-aided, and anatomy-aided tractographies have 12.3%, 9.0%, and 10.93% of the false tracks, respectively, while the QA-aided tractography has 4.43%. The QA-aided deterministic fiber tracking may assist fiber tracking studies and facilitate the advancement of human connectomics. © 2013 Yeh et al

    Factors related to longitudinal adherence in colorectal cancer screening:qualitative research findings

    Get PDF
    Background: The effectiveness of screening in colorectal cancer prevention depends on sustained participation rates. The objective of this study was to explore factors related to the longitudinal adherence of screening behavior in the context of a biennial population-based cancer screening program. Methods: Eight focus groups were conducted with individuals who were invited two or three consecutive times to a population-based colorectal cancer screening program using a fecal occult blood test and who agreed to participate in the program at least once (n = 45). The criteria used to select the study members included adherence to fecal occult blood test maintenance, factors regarding their initial participation in the colorectal cancer screening, sex, and contextual educational level. Results: The participants expressed a high level of satisfaction with the program; however, they showed a low level of understanding with respect to cancer screening. Consulting a general practitioner was cited by all participants as an important factor that mediated their final decision or influenced their behavior as a whole with regard to the program. Fear played a different role in the screening behavior for regular and irregular adherent participants. In the adherent participants, fear facilitated their continued participation in the screening program, whereas for the irregular participants, fear led them to avoid or refuse further screening. Having a close person diagnosed with colorectal cancer was a facilitator for the regular adherent participants. The irregular adherent participants showed some relaxation with respect to screening after a negative result and considered that further screening was no longer necessary. Conclusion: Considering the importance of primary healthcare professionals in the decision regarding sustained participation, it is important to better engage them with cancer screening programs, as well as improve the communication channels to provide accurate and balanced information for both health professionals and individuals.</p
    corecore