8,751 research outputs found

    Derivation of the physical parameters of the jet in S5 0836+710 from stability analysis

    Full text link
    A number of extragalactic jets show periodic structures at different scales that can be associated with growing instabilities. The wavelengths of the developing instability modes and their ratios depend on the flow parameters, so the study of those structures can shed light on jet physics at the scales involved. In this work, we use the fits to the jet ridgeline obtained from different observations of S5 B0836++710 and apply stability analysis of relativistic, sheared flows to derive an estimate of the physical parameters of the jet. Based on the assumption that the observed structures are generated by growing Kelvin-Helmholtz (KH) instability modes, we have run numerical calculations of stability of a relativistic, sheared jet over a range of different jet parameters. We have spanned several orders of magnitude in jet-to-ambient medium density ratio, and jet internal energy, and checked different values of the Lorentz factor and shear layer width. This represents an independent method to obtain estimates of the physical parameters of a jet. By comparing the fastest growing wavelengths of each relevant mode given by the calculations with the observed wavelengths reported in the literature, we have derived independent estimates of the jet Lorentz factor, specific internal energy, jet-to-ambient medium density ratio and Mach number. We obtain a jet Lorentz factor γ12\gamma \simeq 12, specific internal energy of ε102c2\varepsilon \simeq 10^{-2}\,c^2, jet-to-ambient medium density ratio of η103\eta\approx 10^{-3}, and an internal (classical) jet Mach number of Mj12M_\mathrm{j}\approx 12. We also find that the wavelength ratios are better recovered by a transversal structure with a width of 10%\simeq 10\,\% of the jet radius. This method represents a powerful tool to derive the jet parameters in all jets showing helical patterns with different wavelengths.Comment: Accepted for publication in A&A, 15 pages, 12 figure

    The resolved structure of the extragalactic supernova remnant SNR 4449-1

    Get PDF
    We present very long baseline interferometry (VLBI) observations of the milliarcsecond-scale radio structure of the supernova remnant SNR 4449-1 in the galaxy NGC 4449. This young and superluminous remnant was observed at 1.6 GHz (λ=18\lambda = 18\,cm) with the European VLBI Network. The observations confirm earlier identifications of this object with a supernova remnant (SNR) while revealing a somewhat different morphology compared with the structure reported by Bietenholz et al. from VLBI observations at 1.4 GHz. This difference is discussed here in the context of structural sensitivity of both observations. The 1.6 GHz image yields accurate estimates of the size (0.0422 arcsec ×\times 0.0285 arcsec and 0.8 ×\times 0.5 pc) and age (\sim55 yr) of SNR 4449-1. With a total flux of 6.1 ±\pm 0.6 mJy measured in the VLBI image, the historical lightcurve of the source can be well represented by a power-law decay with a power index of -1.19 ±\pm 0.07. The SNR exhibits a decline rate of the radio emission of 2.2% ±\pm 0.1% yr1^{-1} and a radio luminosity of 1.74 ×\times 1035^{35} erg s1^{-1}.Comment: 7 pages, 6 figures, MNRAS preprint, arXiv:1309.401

    Physical properties of the jet in 0836+710 revealed by its transversal structure

    Full text link
    Studying the internal structure of extragalactic jets is crucial for understanding their physics. The Japanese-led space VLBI project VSOP has presented an opportunity for such studies, by reaching baseline lengths of up to 36,000 km and resolving structures down to an angular size of 0.3\approx 0.3 mas at 5 GHz. VSOP observations of the jet in 0836+710 at 1.6 and 5 GHz have enabled tracing of the radial structure of the flow on scales from 2 mas to 200 mas along the jet and determination of the wavelengths of individual oscillatory modes responsible for the formation of the structure observed. We apply linear stability analysis to identify the oscillatory modes with modes of Kelvin-Helmholtz instability that match the wavelengths of the structures observed. We find that the jet structure in 0836+710 can be reproduced by the helical surface mode and a combination of the helical and elliptic body modes of Kelvin-Helmholtz instability. Our results indicate that the jet is substantially stratified and different modes of the instability grow inside the jet at different distances to the jet axis. The helical surface mode can be driven externally, and we discuss the implications of the driving frequency on the physics of the active nucleus in 0836+710.Comment: Accepted for publication in Astronomy & Astrophysics Letter

    Does the Borexino experiment have enough resolution to detect the neutrino flavor day-night asymmetry?

    Full text link
    The Earth's density distribution can be approximately considered piecewise continuous at the scale of two-flavor oscillations of neutrinos with energies about 1 MeV. This quite general assumption appears to be enough to analytically calculate the day-night asymmetry factor. Using the explicit time averaging procedure, we show that, within the leading-order approximation, this factor is determined by the electron density immediately before the detector, i.e. in the Earth's crust. Within the approximation chosen, the resulting asymmetry factor does not depend either on the properties of the inner Earth's layers or on the substance and the dimensions of the detector. For beryllium neutrinos, we arrive at the asymmetry factor estimation of about 4×104-4 \times 10^{-4}, which is at least one order of magnitude beyond the present experimental resolution, including that of the Borexino experiment.Comment: 16 pages, 3 figures; Talk given at the 17th International Seminar on High Energy Physics "QUARKS'2012" (Yaroslavl, Russia, June 4-10, 2012); to appear in the Proceedings volum

    Extragalactic Relativistic Jets and Nuclear Regions in Galaxies

    Get PDF
    Past years have brought an increasingly wider recognition of the ubiquity of relativistic outflows (jets) in galactic nuclei, which has turned jets into an effective tool for investigating the physics of nuclear regions in galaxies. A brief summary is given here of recent results from studies of jets and nuclear regions in several active galaxies with prominent outflows.Comment: 5 pages; contribution to ESO Astrophysical Symposia, "Relativistic Astrophysics and Cosmology", eds. B. Aschenbach, V. Burwitz, G. Hasinger, B. Leibundgut (Springer: Heidelberg 2006
    corecore