1,254 research outputs found

    Anomalous strength of membranes with elastic ridges

    Full text link
    We report on a simulational study of the compression and buckling of elastic ridges formed by joining the boundary of a flat sheet to itself. Such ridges store energy anomalously: their resting energy scales as the linear size of the sheet to the 1/3 power. We find that the energy required to buckle such a ridge is a fixed multiple of the resting energy. Thus thin sheets with elastic ridges such as crumpled sheets are qualitatively stronger than smoothly bent sheets.Comment: 4 pages, REVTEX, 3 figure

    The effects of forcing and dissipation on phase transitions in thin granular layers

    Full text link
    Recent experimental and computational studies of vibrated thin layers of identical spheres have shown transitions to ordered phases similar to those seen in equilibrium systems. Motivated by these results, we carry out simulations of hard inelastic spheres forced by homogenous white noise. We find a transition to an ordered state of the same symmetry as that seen in the experiments, but the clear phase separation observed in the vibrated system is absent. Simulations of purely elastic spheres also show no evidence for phase separation. We show that the energy injection in the vibrated system is dramatically different in the different phases, and suggest that this creates an effective surface tension not present in the equilibrium or randomly forced systems. We do find, however, that inelasticity suppresses the onset of the ordered phase with random forcing, as is observed in the vibrating system, and that the amount of the suppression is proportional to the degree of inelasticity. The suppression depends on the details of the energy injection mechanism, but is completely eliminated when inelastic collisions are replaced by uniform system-wide energy dissipation.Comment: 10 pages, 5 figure

    Trapping of Vibrational Energy in Crumpled Sheets

    Full text link
    We investigate the propagation of transverse elastic waves in crumpled media. We set up the wave equation for transverse waves on a generic curved, strained surface via a Langrangian formalism and use this to study the scaling behaviour of the dispersion curves near the ridges and on the flat facets. This analysis suggests that ridges act as barriers to wave propagation and that modes in a certain frequency regime could be trapped in the facets. A simulation study of the wave propagation qualitatively supported our analysis and showed interesting effects of the ridges on wave propagation.Comment: RevTex 12 pages, 7 figures, Submitted to PR

    Phase field model of premelting of grain boundaries

    Full text link
    We present a phase field model of solidification which includes the effects of the crystalline orientation in the solid phase. This model describes grain boundaries as well as solid-liquid boundaries within a unified framework. With an appropriate choice of coupling of the phase field variable to the gradient of the crystalline orientation variable in the free energy, we find that high angle boundaries undergo a premelting transition. As the melting temperature is approached from below, low angle grain boundaries remain narrow. The width of the liquid layer at high angle grain boundaries diverges logarithmically. In addition, for some choices of model coupling, there may be a discontinuous jump in the width of the fluid layer as function of temperature.Comment: 6 pages, 9 figures, RevTeX

    Unsteady Crack Motion and Branching in a Phase-Field Model of Brittle Fracture

    Full text link
    Crack propagation is studied numerically using a continuum phase-field approach to mode III brittle fracture. The results shed light on the physics that controls the speed of accelerating cracks and the characteristic branching instability at a fraction of the wave speed.Comment: 11 pages, 4 figure

    Geometry of Valley Growth

    Full text link
    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi

    The Statistics of Crumpled Paper

    Get PDF
    A statistical study of crumpled paper is allowed by a minimal 1D model: a self-avoiding line bent at sharp angles -- in which resides the elastic energy -- put in a confining potential. Many independent equilibrium configurations are generated numerically and their properties are investigated. At small confinement, the distribution of segment lengths is log-normal in agreement with previous predictions and experiments. At high confinement, the system approaches a jammed state with a critical behavior, whereas the length distribution follows a Gamma law which parameter is predicted as a function of the number of layers in the system

    Crumpling a Thin Sheet

    Full text link
    Crumpled sheets have a surprisingly large resistance to further compression. We have studied the crumpling of thin sheets of Mylar under different loading conditions. When placed under a fixed compressive force, the size of a crumpled material decreases logarithmically in time for periods up to three weeks. We also find hysteretic behavior when measuring the compression as a function of applied force. By using a pre-treating protocol, we control this hysteresis and find reproducible scaling behavior for the size of the crumpled material as a function of the applied force.Comment: revtex 4 pages, 6 eps figures submitted to Phys Rev. let

    Properties of Ridges in Elastic Membranes

    Full text link
    When a thin elastic sheet is confined to a region much smaller than its size the morphology of the resulting crumpled membrane is a network of straight ridges or folds that meet at sharp vertices. A virial theorem predicts the ratio of the total bending and stretching energies of a ridge. Small strains and curvatures persist far away from the ridge. We discuss several kinds of perturbations that distinguish a ridge in a crumpled sheet from an isolated ridge studied earlier (A. E. Lobkovsky, Phys. Rev. E. 53 3750 (1996)). Linear response as well as buckling properties are investigated. We find that quite generally, the energy of a ridge can change by no more than a finite fraction before it buckles.Comment: 13 pages, RevTeX, acknowledgement adde

    Erosion of a granular bed driven by laminar fluid flow

    Full text link
    Motivated by examples of erosive incision of channels in sand, we investigate the motion of individual grains in a granular bed driven by a laminar fluid to give us new insights into the relationship between hydrodynamic stress and surface granular flow. A closed cell of rectangular cross-section is partially filled with glass beads and a constant fluid flux QQ flows through the cell. The refractive indices of the fluid and the glass beads are matched and the cell is illuminated with a laser sheet, allowing us to image individual beads. The bed erodes to a rest height hrh_r which depends on QQ. The Shields threshold criterion assumes that the non-dimensional ratio θ\theta of the viscous stress on the bed to the hydrostatic pressure difference across a grain is sufficient to predict the granular flux. Furthermore, the Shields criterion states that the granular flux is non-zero only for θ>θc\theta >\theta_c. We find that the Shields criterion describes the observed relationship hrQ1/2h_r \propto Q^{1/2} when the bed height is offset by approximately half a grain diameter. Introducing this offset in the estimation of θ\theta yields a collapse of the measured Einstein number qq^* to a power-law function of θθc\theta - \theta_c with exponent 1.75±0.251.75 \pm 0.25. The dynamics of the bed height relaxation are well described by the power law relationship between the granular flux and the bed stress.Comment: 12 pages, 5 figure
    corecore