5,570 research outputs found
Tunneling transport in NSN junctions made of Majorana nanowires across the topological quantum phase transition
We theoretically consider transport properties of a normal metal (N)-
superconducting semiconductor nanowire (S)-normal metal (N) structure (NSN) in
the context of the possible existence of Majorana bound states in disordered
semiconductor-superconductor hybrid systems in the presence of spin-orbit
coupling and Zeeman splitting induced by an external magnetic field. We study
in details the transport signatures of the topological quantum phase transition
as well as the existence of the Majorana bound states in the electrical
transport properties of the NSN structure. Our theory includes the realistic
nonperturbative effects of disorder, which is detrimental to the topological
phase (eventually suppressing the superconducting gap completely), and the
effects of the tunneling barriers (or the transparency at the tunneling NS
contacts), which affect (and suppress) the zero bias conductance peak
associated with the zero energy Majorana bound states. We show that in the
presence of generic disorder and barrier transparency the interpretation of the
zero bias peak as being associated with the Majorana bound state is problematic
since the nonlocal correlations between the two NS contacts at two ends may not
manifest themselves in the tunneling conductance through the whole NSN
structure. We establish that a simple modification of the standard transport
measurements using conductance differences (rather than the conductance itself
as in a single NS junction) as the measured quantity can allow direct
observation of the nonlocal correlations inherent in the Majorana bound states
and enables the mapping out of the topological phase diagram (even in the
presence of considerable disorder) by precisely detecting the topological
quantum phase transition point.Comment: 34 pages, 7 figures, 1 table. New version with minor modifications
and more physical discussion
A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases
Finite Element mesh generation remains an important issue for patient
specific biomechanical modeling. While some techniques make automatic mesh
generation possible, in most cases, manual mesh generation is preferred for
better control over the sub-domain representation, element type, layout and
refinement that it provides. Yet, this option is time consuming and not suited
for intraoperative situations where model generation and computation time is
critical. To overcome this problem we propose a fast and automatic mesh
generation technique based on the elastic registration of a generic mesh to the
specific target organ in conjunction with element regularity and quality
correction. This Mesh-Match-and-Repair (MMRep) approach combines control over
the mesh structure along with fast and robust meshing capabilities, even in
situations where only partial organ geometry is available. The technique was
successfully tested on a database of 5 pre-operatively acquired complete femora
CT scans, 5 femoral heads partially digitized at intraoperative stage, and 50
CT volumes of patients' heads. The MMRep algorithm succeeded in all 60 cases,
yielding for each patient a hex-dominant, Atlas based, Finite Element mesh with
submillimetric surface representation accuracy, directly exploitable within a
commercial FE software
Effects of interactions in transport through Aharonov-Bohm-Casher interferometers
We study the conductance through a ring described by the Hubbard model (such
as an array of quantum dots), threaded by a magnetic flux and subject to Rashba
spin-orbit coupling (SOC). We develop a formalism that is able to describe the
interference effects as well as the Kondo effect when the number of electrons
in the ring is odd. In the Kondo regime, the SOC reduces the conductance from
the unitary limit, and in combination with the magnetic flux, the device acts
as a spin polarizer.Comment: 5 pages, 5 figure
Parity effect in a mesoscopic Fermi gas
We develop a quantitative analytic theory that accurately describes the
odd-even effect observed experimentally in a one-dimensional, trapped Fermi gas
with a small number of particles [G. Z\"urn et al., Phys. Rev. Lett. 111,
175302 (2013)]. We find that the underlying physics is similar to the parity
effect known to exist in ultrasmall mesoscopic superconducting grains and
atomic nuclei. However, in contrast to superconducting nanograins, the density
(Hartree) correction dominates over the superconducting pairing fluctuations
and leads to a much more pronounced odd-even effect in the mesoscopic, trapped
Fermi gas. We calculate the corresponding parity parameter and separation
energy using both perturbation theory and a path integral framework in the
mesoscopic limit, generalized to account for the effects of the trap, pairing
fluctuations, and Hartree corrections. Our results are in an excellent
quantitative agreement with experimental data and exact diagonalization.
Finally, we discuss a few-to-many particle crossover between the perturbative
mesoscopic regime and non-perturbative many-body physics that the system
approaches in the thermodynamic limit.Comment: 7 pages, 1 figur
Spectral evolution of the SU(4) Kondo effect from the single impurity to the two-dimensional lattice
We describe the evolution of the SU(4) Kondo effect as the number of magnetic
centers increases from one impurity to the two-dimensional (2D) lattice. We
derive a Hubbard-Anderson model which describes a 2D array of atoms or
molecules with two-fold orbital degeneracy, acting as magnetic impurities and
interacting with a metallic host. We calculate the differential conductance,
observed typically in experiments of scanning tunneling spectroscopy, for
different arrangements of impurities on a metallic surface: a single impurity,
a periodic square lattice, and several sites of a rectangular cluster. Our
results point towards the crucial importance of the orbital degeneracy and
agree well with recent experiments in different systems of iron(II)
phtalocyanine molecules deposited on top of Au(111) [N. Tsukahara et al., Phys.
Rev. Lett. 106, 187201 (2011)], indicating that this would be the first
experimental realization of an artificial 2D SU(4) Kondo-lattice system.Comment: 17 pages, 4 figures. New version contains an Appendix with details of
the derivation of the Hamiltonian Eq.(2), derivation of the slave-boson
mean-field equations, and an estimation of the upper bounds of the RKKY
interactio
Magnetic phases in the one-dimensional Kondo chain on a metallic surface
We study the low-temperature properties of a one-dimensional spin-1/2 chain
of magnetic impurities coupled to a (normal) metal environment by means of
anisotropic Kondo exchange. In the case of easy-plane anisotropy, we obtain the
phase diagram of this system at T=0. We show that the in-plane Kondo coupling
destabilizes the Tomonaga-Luttinger phase of the spin-chain, and leads to two
different phases: i) At strong Kondo coupling, the spins in the chain form
Kondo singlets and become screened by the metallic environment, and ii) At weak
and intermediate Kondo coupling, we find a novel dissipative phase
characterized by diffusive gapless spin excitations. The two phases are
separated by a quantum critical point of the Wilson-Fisher universality class
with dynamical exponent .Comment: 15 pages, 3 figures. New version contains clarifications about the
specific approximations. Accepted for publication in PR
- …
