97 research outputs found
A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data
Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants
Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus
Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights
Evaluation of minimum-to-severe global and macrovesicular steatosis in human liver specimens: a portable ambient light-compatible spectroscopic probe
Background and AimsHepatic steatosis (HS), particularly macrovesicular steatosis (MaS), influences transplant outcomes. Accurate assessment of MaS is crucial for graft selection. While traditional assessment methods have limitations, non-invasive spectroscopic techniques like Raman and reflectance spectroscopy offer promise. This study aimed to evaluate the efficacy of a portable ambient light-compatible spectroscopic system in assessing global HS and MaS in human liver specimens.MethodsA two-stage approach was employed on thawed snap-frozen human liver specimens under ambient room light: biochemical validation involving a comparison of fat content from Raman and reflectance intensities with triglyceride (TG) quantifications and histopathological validation, contrasting Raman-derived fat content with evaluations by an expert pathologist and a “Positive Pixel Count” algorithm. Raman and reflectance intensities were combined to discern significant (≥ 10%) discrepancies in global HS and MaS.ResultsThe initial set of 16 specimens showed a positive correlation between Raman and reflectance-derived fat content and TG quantifications. The Raman system effectively differentiated minimum-to-severe global and macrovesicular steatosis in the subsequent 66 specimens. A dual-variable prediction algorithm was developed, effectively classifying significant discrepancies (> 10%) between algorithm-estimated global HS and pathologist-estimated MaS.ConclusionOur study established the viability and reliability of a portable spectroscopic system for non-invasive HS and MaS assessment in human liver specimens. The compatibility with ambient light conditions and the ability to address limitations of previous methods marks a significant advancement in this field. By offering promising differentiation between global HS and MaS, our system introduces an innovative approach to real-time and quantitative donor HS assessments. The proposed method holds the promise of refining donor liver assessment during liver recovery and ultimately enhancing transplantation outcomes.Nephrolog
Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits
Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10−8), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits
Colocalization of GWAS and eQTL signals at loci with multiple signals identifies additional candidate genes for body fat distribution
Integration of genome-wide association study (GWAS) signals with expression quantitative trait loci (eQTL) studies enables identification of candidate genes. However, evaluating whether nearby signals may share causal variants, termed colocalization, is affected by the presence of allelic heterogeneity, different variants at the same locus impacting the same phenotype. We previously identified eQTL in subcutaneous adipose tissue from 770 participants in the Metabolic Syndrome in Men (METSIM) study and detected 15 eQTL signals that colocalized with GWAS signals for waist-hip ratio adjusted for body mass index (WHRadjBMI) from the Genetic Investigation of Anthropometric Traits consortium. Here, we reevaluated evidence of colocalization using two approaches, conditional analysis and the Bayesian test COLOC, and show that providing COLOC with approximate conditional summary statistics at multi-signal GWAS loci can reconcile disagreements in colocalization classification between the two tests. Next, we performed conditional analysis on the METSIM subcutaneous adipose tissue data to identify conditionally distinct or secondary eQTL signals. We used the two approaches to test for colocalization with WHRadjBMI GWAS signals and evaluated the differences in colocalization classification between the two tests. Through these analyses, we identified four GWAS signals colocalized with secondary eQTL signals for FAM13A, SSR3, GRB14 and FMO1. Thus, at loci with multiple eQTL and/or GWAS signals, analyzing each signal independently enabled additional candidate genes to be identified
Adiponectin GWAS loci harboring extensive allelic heterogeneity exhibit distinct molecular consequences
Loci identified in genome-wide association studies (GWAS) can include multiple distinct association signals. We sought to identify the molecular basis of multiple association signals for adiponectin, a hormone involved in glucose regulation secreted almost exclusively from adipose tissue, identified in the Metabolic Syndrome in Men (METSIM) study. With GWAS data for 9,262 men, four loci were significantly associated with adiponectin: ADIPOQ, CDH13, IRS1, and PBRM1. We performed stepwise conditional analyses to identify distinct association signals, a subset of which are also nearly independent (lead variant pairwise r2<0.01). Two loci exhibited allelic heterogeneity, ADIPOQ and CDH13. Of seven association signals at the ADIPOQ locus, two signals colocalized with adipose tissue expression quantitative trait loci (eQTLs) for three transcripts: trait-increasing alleles at one signal were associated with increased ADIPOQ and LINC02043, while trait-increasing alleles at the other signal were associated with decreased ADIPOQ-AS1. In reporter assays, adiponectin-increasing alleles at two signals showed corresponding directions of effect on transcriptional activity. Putative mechanisms for the seven ADIPOQ signals include a missense variant (ADIPOQ G90S), a splice variant, a promoter variant, and four enhancer variants. Of two association signals at the CDH13 locus, the first signal consisted of promoter variants, including the lead adipose tissue eQTL variant for CDH13, while a second signal included a distal intron 1 enhancer variant that showed ~2-fold allelic differences in transcriptional reporter activity. Fine-mapping and experimental validation demonstrated that multiple, distinct association signals at these loci can influence multiple transcripts through multiple molecular mechanisms
Adipose Tissue Gene Expression Associations Reveal Hundreds of Candidate Genes for Cardiometabolic Traits
Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits. © 2019 American Society of Human Genetic
Representational predicaments for employees: Their impact on perceptions of supervisors\u27 individualized consideration and on employee job satisfaction
A representational predicament for a subordinate vis-à-vis his or her immediate superior involves perceptual incongruence with the superior about the subordinate\u27s work or work context, with unfavourable implications for the employee. An instrument to measure the incidence of two types of representational predicament, being neglected and negative slanting, was developed and then validated through an initial survey of 327 employees. A subsequent substantive survey with a fresh sample of 330 employees largely supported a conceptual model linking being neglected and negative slanting to perceptions of low individualized consideration by superiors and to low overall job satisfaction. The respondents in both surveys were all Hong Kong Chinese. Two case examples drawn from qualitative interviews illustrate and support the conceptual model. Based on the research findings, we recommend some practical exercises to use in training interventions with leaders and subordinates. © 2013 Copyright Taylor and Francis Group, LLC
Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study
Comprehensivemetabolite profiling capturesmany highly heritable traits, including amino acid levels, which are potentially sensitive biomarkers for disease pathogenesis. To better understand the contribution of genetic variation to amino acid levels, we performed single variant and gene-based tests of association between nine serumamino acids (alanine, glutamine, glycine, histidine, isoleucine, leucine, phenylalanine, tyrosine, and valine) and 16.6million genotyped and imputed variants in 8545 nondiabetic Finnishmen fromtheMETabolic Syndrome In Men (METSIM) study with replication in Northern Finland Birth Cohort (NFBC1966).We identified five novel loci associated with amino acid levels (P = < 5×10-8): LOC157273/PPP1R3B with glycine (rs9987289, P = 2.3×10-26); ZFHX3 (chr16:73326579,minor allele frequency (MAF) = 0.42%, P = 3.6×10-9), LIPC (rs10468017, P = 1.5×10-8), and WWOX (rs9937914, P = 3.8×10-8) with alanine; and TRIB1 with tyrosine (rs28601761, P = 8×10-9). Gene-based tests identified two novel genes harboringmissense variants ofMAF < 1% that show aggregate association with amino acid levels: PYCR1 with glycine (Pgene = 1.5×10-6) and BCAT2 with valine (Pgene = 7.4×10-7); neither gene was implicated by single variant association tests. These findings are among the first applications of gene-based tests to identify new loci for amino acid levels. In addition to the seven novel gene associations, we identified five independent signals at established amino acid loci, including two rare variant signals at GLDC (rs138640017,MAF=0.95%, Pconditional = 5.8×10-40) with glycine levels and HAL (rs141635447,MAF = 0.46%, Pconditional = 9.4×10-11) with histidine levels. Examination of all single variant association results in our data revealed a strong inverse relationship between effect size and MAF (Ptrend < 0.001). These novel signals provide further insight into the molecularmechanisms of amino acidmetabolismand potentially, their perturbations in disease
Motivation and satisfaction of volunteers for community-based urban agriculture programmes
Urban agriculture means cultivating plants and raising livestock within cities for food and other uses. A Community‐based Urban Agriculture Programme is where people from residential areas get together as volunteers to practise urban agriculture in an empty space within residential areas. However, the programme encounters problems when it is incapable of attracting enough volunteers and retaining them in order to establish a sustainable programme. This study aims to determine the relationship between the dimensions of motivation and satisfaction of volunteers on the Community‐based Urban Agriculture Programme. Data collected from 375 volunteers on the Community‐based Urban Agriculture Programme in Klang Valley, Malaysia were analysed using descriptive analysis, reliability analysis, correlation analysis, and hierarchical multiple regression analysis. It was found that the most significant predictor of Community‐based Urban Agriculture Programme volunteers’ satisfaction was favoured by external factors such as campaigns, support groups, Department of Extension, and community as well as government policy, followed by love of farming, social referents, and values. Therefore, there should be a focus on the above‐mentioned dimensions of motivation in order to enhance the satisfaction of volunteers towards the Community‐based Urban Agriculture Programme
- …
