93 research outputs found
Research on the sonic boom problem. Part 1: Second-order solutions for the flow field around slender bodies in supersonic flow for sonic boom analysis
A second-order theory for supersonic flow past slender bodies is presented. Through the introduction of characteristic coordinates as independent variables and the expansion procedure proposed by Lin and Oswatitsch, a uniformly valid solution is obtained for the whole flow field in the axisymmetric case and for far field in the general three-dimensional case. For distances far from the body the theory is an extension of Whitham's first-order solution and for the domain close to the body it is a modification of Van Dyke's second-order solution in the axisymmetric case. From the theory useful formulas relating flow deflections to the Whitham F-function are derived, which permits one to determine the sonic boom strength from wind tunnel measurements fairly close to the body
Closed-loop Bayesian Semantic Data Fusion for Collaborative Human-Autonomy Target Search
In search applications, autonomous unmanned vehicles must be able to
efficiently reacquire and localize mobile targets that can remain out of view
for long periods of time in large spaces. As such, all available information
sources must be actively leveraged -- including imprecise but readily available
semantic observations provided by humans. To achieve this, this work develops
and validates a novel collaborative human-machine sensing solution for dynamic
target search. Our approach uses continuous partially observable Markov
decision process (CPOMDP) planning to generate vehicle trajectories that
optimally exploit imperfect detection data from onboard sensors, as well as
semantic natural language observations that can be specifically requested from
human sensors. The key innovation is a scalable hierarchical Gaussian mixture
model formulation for efficiently solving CPOMDPs with semantic observations in
continuous dynamic state spaces. The approach is demonstrated and validated
with a real human-robot team engaged in dynamic indoor target search and
capture scenarios on a custom testbed.Comment: Final version accepted and submitted to 2018 FUSION Conference
(Cambridge, UK, July 2018
Onsala Space Observatory - IVS Analysis Center
This report briefly summarizes the activities of the IVS Analysis Center at the Onsala Space Observatory during 2012 and gives examples of results of ongoing work
Onsala Space Observatory: IVS Network Station
During 2012 we participated in 40 IVS sessions. As in the previous four years, we used the majority of the sessions that involved both Onsala and Tsukuba to do ultra-rapid dUT1 observations together with our colleagues in Tsukuba. We observed one four-station ultra-rapid EOP session together with Tsukuba, Hobart, and HartRAO. We also observed the RadioAstron satellite and several GLONASS satellites using the Onsala 25-m telescope. The highlight in 2012 was that our proposal to the Knut and Alice Wallenberg Foundation to establish a twin-telescope system at Onsala in accordance with the VLBI2010 recommendations was accepted
From Napkin to Orbit in 9 Months; The TechEdSat Spacecraft Mission
The TechEdSat spacecraft mission saw one of the fastest turn around times for concept through launch of a CubeSat. On 26 October 2011, John Hines sketched on a brown paper napkin the outline for which components would be in this 1U CubeSat, and how they would be stacked; 269 days later that spacecraft launched from Tanegashima Space Center aboard the HTV-3 ISS resupply mission, with a total development time of only eight months. TechEdSat was among the first of five CubeSats deployed from the ISS. The goals of the TechEdSat mission were to explore the use of the Space Plug-n-Play Architecture (SPA) in a CubeSat, and to evaluate Commercial Off The Shelf (COTS) space-to-space communication solutions. TechEdSat featured an array of processors from AC Microtec including four NanoRTU's and the RTULite main processor, all communicating using the SPA-1 protocol. TechEdSat featured two primary payloads: an Iridium 9602 Modem, and a Quake Global Q1000 OrbComm modem. After a successful deployment on 4 October 2012 from the ISS, over 2000 packets of 122 bytes each (250 kB total) were received in the first four months of the mission. In this paper we discuss the challenges to rapid CubeSat development, the experience of having a CubeSat approved for deployment from the ISS, the ongoing results of the mission and lessons learned
Software for Generating Troposphere Corrections for InSAR Using GPS and Weather Model Data
Atmospheric errors due to the troposphere are a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging. This software generates tropospheric delay maps that can be used to correct atmospheric artifacts in InSAR data. The software automatically acquires all needed GPS (Global Positioning System), weather, and Digital Elevation Map data, and generates a tropospheric correction map using a novel algorithm for combining GPS and weather information while accounting for terrain. Existing JPL software was prototypical in nature, required a MATLAB license, required additional steps to acquire and ingest needed GPS and weather data, and did not account for topography in interpolation. Previous software did not achieve a level of automation suitable for integration in a Web portal. This software overcomes these issues. GPS estimates of tropospheric delay are a source of corrections that can be used to form correction maps to be applied to InSAR data, but the spacing of GPS stations is insufficient to remove short-wavelength tropospheric artifacts. This software combines interpolated GPS delay with weather model precipitable water vapor (PWV) and a digital elevation model to account for terrain, increasing the spatial resolution of the tropospheric correction maps and thus removing short wavelength tropospheric artifacts to a greater extent. It will be integrated into a Web portal request system, allowing use in a future L-band SAR Earth radar mission data system. This will be a significant contribution to its technology readiness, building on existing investments in in situ space geodetic networks, and improving timeliness, quality, and science value of the collected dat
Nation-Work: A Praxeology of Making and Maintaining Nations
This article bridges the literatures on nationalist projects and everyday nationhood by elucidating a repertoire of actions shared by both. Analysis of such “nation-work” contributes to the cognitive turn in ethnicity and nationalism research by showing how ethnonational categorization operates. The author distinguishes three types of categorization processes at play: (1) we-they distinctions are made across ethnonational groups, (2) these ethnonational distinctions are further specified by linking them with non-ethnonational categories such as gender and class, and (3) differentiations are made within the same ethnonational category by distinguishing exemplary from less exemplary members of the category. Through historical and ethnographic analyses of the tea ceremony in Japan, the author shows how distinctions drawn across national boundaries help select the characteristics of national membership. Yet while nationalism may project an image of a homogeneous “we,” internal heterogeneity is crucial for refining the experience and performance of membership in the nation
Light Harvesting Schemes for High Efficiency Thin Film Silicon Solar Cells
In Thin Film Silicon (TF-Si) solar cells light harvesting schemes must guarantee an efficient light trapping in the thin absorber layers without decreasing the silicon layers quality and consecutively the p-i-n diodes electrical performance. TF-Si solar cells resilience to the substrate roughness is reported to be possibly improved through optimizations of the cell design and of the silicon deposition processes. By further tailoring the superstrate texture, amorphous silicon / microcrystalline silicon (a-Si:H/mu c-Si:H) tandem solar cells with an initial efficiency up to 13.7 % and a stabilized efficiency up to 11.8 % are demonstrated on single-scale textured superstrates. An alternative approach combining large and smooth features nanoimprinted onto a transparent lacquer with small and sharp textures from as-grown LPCVD ZnO is then shown to have a high potential for further increasing TF-Si devices efficiency. First results demonstrate up to 14.1 % initial efficiency for a TF-Si tandem solar cell
Características histopatológicas necessárias para a pesquisa de bacilos álcool-ácido resistentes no eritema nodoso
- …
