2,538 research outputs found
New methodology for shaft design based on life expectancy
The design of power transmission shafting for reliability has not historically received a great deal of attention. However, weight sensitive aerospace and vehicle applications and those where the penalties of shaft failure are great, require greater confidence in shaft design than earlier methods provided. This report summarizes a fatigue strength-based, design method for sizing shafts under variable amplitude loading histories for limited or nonlimited service life. Moreover, applications factors such as press-fitted collars, shaft size, residual stresses from shot peening or plating, corrosive environments can be readily accommodated into the framework of the analysis. Examples are given which illustrate the use of the method, pointing out the large life penalties due to occasional cyclic overloads
Design of power-transmitting shifts
Power transmission shafting which is a vital element of all rotating machinery is discussed. Design methods, based on strength considerations for sizing shafts and axles to withstand both steady and fluctuating loads are summarized. The effects of combined bending, torsional, and axial loads are considered along with many application factors that are known to influence the fatigue strength of shafting materials. Methods are presented to account for variable amplitude loading histories and their influence on limited life designs. The influences of shaft rigidity, materials, and vibration on the design are discussed
Advanced continuously variable transmissions for electric and hybrid vehicles
A brief survey of past and present continuously variable transmissions (CVT) which are potentially suitable for application with electric and hybrid vehicles is presented. Discussion of general transmission requirements and benefits attainable with a CVT for electric vehicle use is given. The arrangement and function of several specific CVT concepts are cited along with their current development status. Lastly, the results of preliminary design studies conducted under a NASA contract for DOE on four CVT concepts for use in advanced electric vehicles are reviewed
Proposed design procedure for transmission shafting under fatigue loading
A new standard for the design of transmission shafting is reported. Computed was the diameter of rotating solid steel shafts under combined cyclic bending and steady torsion is presented. The formula is based on an elliptical variation of endurance strength with torque exhibited by combined stress fatigue data. Fatigue factors are cited to correct specimen bending endurance strength data for use in the shaft formula. A design example illustrates how the method is to be applied
Spin analysis of concentrated traction contacts
Spin, the result of a mismatch in contact radii on either side of the point of rolling, has a detrimental effect on traction contact performance. It occurs in concentrated contacts having conical or contoured rolling elements, such as those in traction drives or angular contact bearings, and is responsible for an increase in contact heating and power loss. The kinematics of spin producing contact geometries and the subsequent effect on traction and power loss are investigated. The influence of lubricant traction characteristics and contact geometries that minimize spin are also addressed
Two gimbal bearing case studies: Some lessons learned
Two troublesome, torque related problems associated with gimbal actuators are discussed. Large, thin section angular contact bearings can have a surprisingly high torque sensitivity to radial thermal gradients. A predictive thermal-mechanical bearing analysis, as described, was helpful in establishing a safe temperature operating envelope. In the second example, end-of-travel torque limits of an oscillatory gimbal bearing appoached motor stall during limit cycling life tests. Bearing modifications required to restore acceptable torque performance are described. The lessons learned from these case studies should benefit designers of precision gimbals where singular bearing torque related problems are not uncommon
Kinematic stability of roller pairs in free rolling contact
A set of generalized stability equations was developed for roller pairs in free rolling contact. A symmetric, dual contact model was used. Four possible external contact profiles that possess continuous contacting surfaces were studied. It was found that kinematic stability would be insured if the larger radius of transverse curvature, in absolute value, and the smaller rolling radius both exist on the roller that has the apex of its conical surface outboard of its main body. The stability criteria developed are considered to be useful for assessing axial restraint requirements for a variety of roller mechanisms and in the selection of roller contact geometry for traction drive devices
Factors that affect the fatigue strength of power transmission shafting
A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue
An analysis of traction drive torsional stiffness
The tangential compliance of elastic bodies in concentrated contact applied to traction drive elements to determine their torsional stiffness was analyzed. Static loading and rotating conditions are considered. The effects of several design variables are shown. The theoretical torsional stiffness of a fixed ratio multiroller drive is computed and compared to experimental values. It is shown that the torsional compliance of the traction contacts themselves is a relatively small portion of the overall drive system compliance
Effect of geometry and operating conditions on spur gear system power loss
The results of an analysis of the effects of spur gear size, pitch, width, and ratio on total mesh power loss for a wide range of speeds, torques, and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling, and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine pitched gears had higher peak efficiencies but low part load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full load loss except at low speeds
- …
