141 research outputs found

    ϒ production in p–Pb collisions at √sNN=8.16 TeV

    Get PDF
    ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio

    Multiplicity dependence of inclusive J/psi production at midrapidity in pp collisions at root s=13 TeV

    Get PDF
    Measurements of the inclusive J/psi yield as a function of charged-particle pseudorapidity density dN(ch)/d eta in pp collisions at root s = 13 TeV with ALICE at the LHC are reported. The J/psi meson yield is measured at midrapidity (vertical bar y vertical bar <0.9) in the dielectron channel, for events selected based on the charged-particle multiplicity at midrapidity (vertical bar eta vertical bar <1) and at forward rapidity (-3.7 <eta <-1.7 and 2.8 <eta <5.1); both observables are normalized to their corresponding averages in minimum bias events. The increase of the normalized J/psi yield with normalized dN(ch)/d eta is significantly stronger than linear and dependent on the transverse momentum. The data are compared to theoretical predictions, which describe the observed trends well, albeit not always quantitatively. (C) 2020 European Organization for Nuclear Research. Published by Elsevier B.V.Peer reviewe

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)

    First measurement of Ωc0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| &lt;0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 &lt; pT &lt; 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions

    Multiplicity dependence of K*(892)0 and ϕ(1020) production in pp collisions at s=13 TeV

    Get PDF
    The striking similarities that have been observed between high-multiplicity proton-proton (pp) collisions and heavy-ion collisions can be explored through multiplicity-differential measurements of identified hadrons in pp collisions. With these measurements, it is possible to study mechanisms such as collective flow that determine the shapes of hadron transverse momentum (pT) spectra, to search for possible modifications of the yields of short-lived hadronic resonances due to scattering effects in an extended hadron-gas phase, and to investigate different explanations provided by phenomenological models for enhancement of strangeness production with increasing multiplicity. In this paper, these topics are addressed through measurements of the K∗(892)0 and φ(1020)mesons at midrapidity in pp collisions at √s=13TeV as a function of the charged-particle multiplicity. The results include the pT spectra, pT-integrated yields, mean transverse momenta, and the ratios of the yields of these resonances to those of longer-lived hadrons. Comparisons with results from other collision systems and energies, as well as predictions from phenomenological models, are also discussed

    Light neutral-meson production in pp collisions at = 13 TeV

    No full text
    The momentum-differential invariant cross sections of π0 and η mesons are reported for pp collisions at = 13 TeV at midrapidity (|y| < 0.8). The measurement is performed in a broad transverse-momentum range of 0.2 < pT< 200 GeV/c and 0.4 < pT< 60 GeV/c for the π0 and η, respectively, extending the pT coverage of previous measurements. Transverse-mass-scaling violation of up to 60% at low transverse momentum has been observed, agreeing with measurements at lower collision energies. Transverse Bjorken x (xT) scaling of the π0 cross sections at LHC energies is fulfilled with a power-law exponent of n = 5.01 ± 0.05, consistent with values obtained for charged pions at similar collision energies. The data are compared to predictions from next-to-leading order perturbative QCD calculations, where the π0 spectrum is best described using the CT18 parton distribution function and the NNFF1.0 or BDSS fragmentation function. Expectations from PYTHIA8 and EPOS LHC overestimate the spectrum for the π0 and are not able to describe the shape and magnitude of the η spectrum. The charged-particle multiplicity dependent π0 and η pT spectra show the expected change of the spectral shape, characterized by a flatter slope with increasing multiplicity. This is demonstrated across a broad transverse-momentum range and up to events with a charged-particle multiplicity exceeding five times the mean value in minimum bias collisions. The η/π0 ratio depends on the charged-particle multiplicity for pT< 4 GeV/c. PYTHIA8 and EPOS LHC qualitatively explain this behavior with an increasing contribution from the feed-down of heavier particles to the π0 spectrum

    Multiplicity-dependent jet modification from di-hadron correlations in pp collisions at √s = 13 TeV

    No full text
    Short-range correlations between charged particles are studied via two-particle angular correlations in pp collisions at √s = 13 TeV. The correlation functions are measured as a function of the relative azimuthal angle ∆φ and the pseudorapidity separation ∆η for pairs of primary charged particles within the pseudorapidity interval |η| < 0.9 and the transverse-momentum range 1 < pT< 8 GeV/c. Near-side (|∆φ| < 1.3) peak widths are extracted from a generalised Gaussian fitted over the correlations in full pseudorapidity separation (|∆η| < 1.8), while the per-trigger associated near-side yields are extracted for the short-range correlations (|∆η| < 1.3). Both are evaluated as a function of charged-particle multiplicity obtained by two different event activity estimators. The width of the near-side peak decreases with increasing multiplicity, and this trend is reproduced qualitatively by the Monte Carlo event generators PYTHIA 8, AMPT, and EPOS. However, the models overestimate the width in the low transverse-momentum region (pT< 3 GeV/c). The per-trigger associated near-side yield increases with increasing multiplicity. Although this trend is also captured qualitatively by the considered event generators, the yield is mostly overestimated by the models in the considered kinematic range. The measurement of the shape and yield of the short-range correlation peak can help us understand the interplay between jet fragmentation and event activity, quantify the narrowing trend of the near-side peak as a function of transverse momentum and multiplicity selections in pp collisions, and search for final-state jet modification in small collision systems

    Production of Λ and KS0 in jets in p–Pb collisions at sNN=5.02 TeV and pp collisions at s=7 TeV

    No full text
    The production of Λ baryons and KS0 mesons (V0 particles) was measured in p–Pb collisions at sNN=5.02 TeV and pp collisions at s=7 TeV with ALICE at the LHC. The production of these strange particles is studied separately for particles associated with hard scatterings and the underlying event to shed light on the baryon-to-meson ratio enhancement observed at intermediate transverse momentum (pT) in high multiplicity pp and p–Pb collisions. Hard scatterings are selected on an event-by-event basis with jets reconstructed with the anti-kT algorithm using charged particles. The production of strange particles associated with jets pT,jetch&amp;gt;10 and pT,jetch&amp;gt;20 GeV/c in p–Pb collisions, and with jet pT,jetch&amp;gt;10 GeV/c in pp collisions is reported as a function of pT. Its dependence on angular distance from the jet axis, R(V0,jet), for jets with pT,jetch&amp;gt;10 GeV/c in p–Pb collisions is reported as well. The pT-differential production spectra of strange particles associated with jets are found to be harder compared to that in the underlying event and both differ from the inclusive measurements. In events containing a jet, the density of the V0 particles in the underlying event is found to be larger than the density in the minimum bias events. The Λ/KS0 ratio associated with jets in p–Pb collisions is consistent with the ratio in pp collisions and follows the expectation of jets fragmenting in vacuum. On the other hand, this ratio within jets is consistently lower than the one obtained in the underlying event and it does not show the characteristic enhancement of baryons at intermediate pT often referred to as “baryon anomaly” in the inclusive measurements. © 2022 European Organization for Nuclear Research, ALIC

    J/ψ-hadron correlations at midrapidity in pp collisions at s = 13 TeV

    No full text
    We report on the measurement of inclusive, non-prompt, and prompt J/ψ-hadron correlations by the ALICE Collaboration at the CERN Large Hadron Collider in pp collisions at a center-of-mass energy of 13 TeV. The correlations are studied at midrapidity (|y| < 0.9) in the transverse momentum ranges pT< 40 GeV/c for the J/ψ and 0.15 < pT< 10 GeV/c and |η| < 0.9 for the associated hadrons. The measurement is based on minimum bias and high multiplicity data samples corresponding to integrated luminosities of Lint = 34 nb−1 and Lint = 6.9 pb−1, respectively. In addition, two more data samples are employed, requiring, on top of the minimum bias condition, a threshold on the tower energy of E = 4 and 9 GeV in the ALICE electromagnetic calorimeters, which correspond to integrated luminosities of Lint = 0.9 pb−1 and Lint = 8.4 pb−1, respectively. The azimuthally integrated near and away side yields of associated charged hadrons per J/ψ trigger are presented as a function of the J/ψ and associated hadron transverse momentum. The measurements are discussed in comparison to PYTHIA calculations

    Search for a common baryon source in high-multiplicity pp collisions at the LHC

    No full text
    We report on the measurement of the size of the particle-emitting source from two-baryon correlations with ALICE in high-multiplicity pp collisions at s=13 TeV. The source radius is studied with low relative momentum p–p, p‾–p‾, p–Λ, and p‾–Λ‾ pairs as a function of the pair transverse mass mT considering for the first time in a quantitative way the effect of strong resonance decays. After correcting for this effect, the radii extracted for pairs of different particle species agree. This indicates that protons, antiprotons, Λ s, and Λ‾ s originate from the same source. Within the measured mT range (1.1–2.2) GeV/c2the invariant radius of this common source varies between 1.3 and 0.85 fm. These results provide a precise reference for studies of the strong hadron–hadron interactions and for the investigation of collective properties in small colliding systems. © 2020 CERN for the benefit of the ALICE Collaboratio
    corecore