1,100 research outputs found
Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides
Several strains of Fusarium isolated from banana were identified previously as F. verticillioides (Sacc.) Nirenberg but described as unable to produce fumonisin. Here we report biochemical and morphological evidence, as well as multilocus phylogenetic analyses based on elongation factor (EF-1a), calmodulin, b-tubulin, and the second largest subunit of RNA polymerase II (RPB2) sequences, indicating that these isolates represent a unique lineage in the Gibberella fujikuroi species complex related to but distinct from F. verticillioides. Together with previous results of molecular studies, as well as with results of metabolite analyses, crossing experiments, pathogenicity tests and morphological characterization, these new data indicate that these strains isolated from banana represent a new species, Gibberella musae Van Hove et al. sp. nov. (anamorph: Fusarium musae Van Hove et al. sp. nov.), which is described herei
Report from the 1st MYCOKEY international conference Global Mycotoxin Reduction in the Food and Feed Chain held in Ghent, Belgium, 11-14 September 2017
Aflatoxins are cancer-promoting natural toxins that are produced by the fungus Aspergillus flavus and Aspergillus parasiticus. Aflatoxins have been regarded as one of the most fatal threat in food safety, due to their strong hepatotoxic, carcinogenic and teratogenic effects on human beings and animals. Among them, aflatoxin B1 (AFB1) is one of the common types which have received considerable attention. Thus, developing a rapid, simple and reliable method for determination of AFB1 in foods is very important. Herein, a preliminary study of Frster resonance energy transfer (FRET) immunoassay based on the cadmium-free quantum dots for determination of AFB1 was described. To avoid the use of hazardous heavy metals, core/shell InP/ZnS quantum dots (QDs) as an alternative for Cd-based QDs were synthesized. A silica shell with epoxy groups was used for water solubilization of the obtained nanoparticles. Then a specific anti-AFB1 monoclonal antibody (mAb) was labelled with the hydrophilic QDs via these highly reactive epoxy groups. Gel electrophoresis was used to control the binding. After that, the FRET system was developed using the Cd-free QDs conjugate as donor. Graphene oxide was selected as acceptor. In order to keep the distance between donor and acceptor close enough, the size of silica coated QDs should be controlled strictly. We found that 1-dodecantiol which was used for ligands change on the surface of InP/ZnS QDs was better than oleylamine and the optimum amount of tetraoxysilane was 5 mu L in the silylanization. Besides, only ethanol and hexane were used to wash silica coated QDs which could ensure good dispersion of QDs in water. The cut-off value for the determination of AFB1 in tube was 10 ng/mL with a preliminary study. Compared to reported FRET assays with Cd-based QDs, the developed FRET was easy-to-operate, visual and safe
Comments on "Screening and identification of novel ochratoxin A-producing fungi from grapes. Toxins 2016,8,833" - in reporting ochratoxin A production from strains of Aspergillus, Penicillium and talaromcyes
Recently a species in the genus Talaromyces, a uniseriate species of Aspergillus section Nigri and an isolate each of two widespread species, Penicillium rubens and P. commune, were reported to produce ochratoxin A. This claim was based on insufficient biological and chemical data. We propose a list of criteria that need to be met before an unexpected mycotoxin producer is reported. There have only been convincing data on ochratoxin A production for Penicillium verrucosum, P. nordicum, P. thymicola, all from Penicillium series Verrucosa, and from species in three sections of Aspergillus: section Circumdati, section Nigri and section Flavi
Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction
Citation: Liuzzi, V. C., Mirabelli, V., Cimmarusti, M. T., Haidukowski, M., Leslie, J. F., Logrieco, A. F., . . . Mule, G. (2017). Enniatin and Beauvericin Biosynthesis in Fusarium Species: Production Profiles and Structural Determinant Prediction. Toxins, 9(2), 17. doi:10.3390/toxins9020045Members of the fungal genus Fusarium can produce numerous secondary metabolites, including the nonribosomal mycotoxins beauvericin (BEA) and enniatins (ENNs). Both mycotoxins are synthesized by the multifunctional enzyme enniatin synthetase (ESYN1) that contains both peptide synthetase and S-adenosyl-L-methionine-dependent N-methyltransferase activities. Several Fusarium species can produce ENNs, BEA or both, but the mechanism(s) enabling these differential metabolic profiles is unknown. In this study, we analyzed the primary structure of ESYN1 by sequencing esyn1 transcripts from different Fusarium species. We measured ENNs and BEA production by ultra-performance liquid chromatography coupled with photodiode array and Acquity QDa mass detector (UPLC-PDA-QDa) analyses. We predicted protein structures, compared the predictions by multivariate analysis methods and found a striking correlation between BEA/ENN-producing profiles and ESYN1 three-dimensional structures. Structural differences in the beta strand's Asn789-Ala793 and His797-Asp802 portions of the amino acid adenylation domain can be used to distinguish BEA/ENN-producing Fusarium isolates from those that produce only ENN
A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatum-equiseti species complex
"Available online 22 June 2016"DNA-based phylogenetic analyses have resolved the fungal genus Fusarium into multiple species complexes. The F. incarnatum-equiseti species complex (FIESC) includes fusaria associated with several diseases of agriculturally important crops, including cereals. Although members of FIESC are considered to be only moderately aggressive, they are able to produce a diversity of mycotoxins, including trichothecenes, which can accumulate to harmful levels in cereals. High levels of cryptic speciation have been detected within the FIESC. As a result, it is often necessary to use approaches other than morphological characterization to distinguish species. In the current study, we used a polyphasic approach to characterize a collection of 69 FIESC isolates recovered from cereals in Europe, Turkey, and North America. In a species phylogeny inferred from nucleotide sequences from four housekeeping genes, 65 of the isolates were resolved within the Equiseti clade of the FIESC, and four isolates were resolved within the Incarnatum clade. Seven isolates were resolved as a genealogically exclusive lineage, designated here as FIESC 31. Phylogenies based on nucleotide sequences of trichothecene biosynthetic genes and MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) were largely concordant with phylogeny inferred from the housekeeping gene. Finally, Liquid Chromatography (Time-Of-Flight) Mass Spectrometry [LC-(TOF-)MS(/MS)] revealed variability in mycotoxin production profiles among the different phylogenetic species investigated in this study.This work was supported by the EU project EC KBBE-2007-222690-2 MYCORED
The Gifted Student: Gifts and Talents Development
Abstract The concept of giftedness has evolved significantly over time. Today, it still lacks a singular and precise definition, but it is continually evolving. One notable model found in the literature is the Differentiated Model of Giftedness and Talent (DMGT) by Gagné. This model appears to be a valid contribution to better understanding giftedness, the characteristics of gifted students and the problems related to these constructs. The article aims to highlight the characteristics of gifted students, underlining critical points and strengths in relation to the various contexts, specifically to the school context, and to Gagné’s model (personal, scholastic, environmental and social), with a focus on future implications
Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice
Biochar-based compound fertilizers (BCF) and amendments have proven to enhance crop yields and modify soil properties (pH, nutrients, organic matter, structure etc.) and are now in commercial production in China. While there is a good understanding of the changes in soil properties following biochar addition, the interactions within the rhizosphere remain largely unstudied, with benefits to yield observed beyond the changes in soil properties alone. We investigated the rhizosphere interactions following the addition of an activated wheat straw BCF at an application rates of 0.25% (g·g−1 soil), which could potentially explain the increase of plant biomass (by 67%), herbage N (by 40%) and P (by 46%) uptake in the rice plants grown in the BCF-treated soil, compared to the rice plants grown in the soil with conventional fertilizer alone. Examination of the roots revealed that micron and submicron-sized biochar were embedded in the plaque layer. BCF increased soil Eh by 85 mV and increased the potential difference between the rhizosphere soil and the root membrane by 65 mV. This increased potential difference lowered the free energy required for root nutrient accumulation, potentially explaining greater plant nutrient content and biomass. We also demonstrate an increased abundance of plant-growth promoting bacteria and fungi in the rhizosphere. We suggest that the redox properties of the biochar cause major changes in electron status of rhizosphere soils that drive the observed agronomic benefits
The Paradox of Tik Tok Anti-Pro-Anorexia Videos: How Social Media Can Promote Non-Suicidal Self-Injury and Anorexia
The literature shows that social pressure promotes non-suicidal self-injury (NSSI) eating disorders, along with self-injury, are also favored by underregulated social media. Tik tok is one of the most used social media platforms among adolescents. It has been shown that the time young children spend on this platform doubled during the lockdown. The theme of anorexia is very common on this platform. While most "pro-ana" (pro-anorexia) videos, where users exchanged advice on how to pathologically lose weight, have been censored by the application, other "anti-pro-ana" (anti-pro-anorexia) videos, officially aimed at raising awareness of the consequences of anorexia, have become increasingly popular. However, our case shows how even these safer videos paradoxically lead the users to emulate these "guilty" behaviors
Synthesis of Natural and Unnatural Cyclooligomeric Depsipeptides Enabled by Flow Chemistry.
Flow chemistry has been successfully integrated into the synthesis of a series of cyclooligomeric depsipeptides of three different ring sizes including the natural products beauvericin (1 a), bassianolide (2 b) and enniatin C (1 b). A reliable flow chemistry protocol was established for the coupling and macrocyclisation to form challenging N-methylated amides. This flexible approach has allowed the rapid synthesis of both natural and unnatural depsipeptides in high yields, enabling further exploration of their promising biological activity.The authors gratefully acknowledge the EPSRC for financial support (grants EP/K009494/1 and EP/K039520/1). This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/chem.20150445
- …
