428 research outputs found
The critical behavior of frustrated spin models with noncollinear order
We study the critical behavior of frustrated spin models with noncollinear
order, including stacked triangular antiferromagnets and helimagnets. For this
purpose we compute the field-theoretic expansions at fixed dimension to six
loops and determine their large-order behavior. For the physically relevant
cases of two and three components, we show the existence of a new stable fixed
point that corresponds to the conjectured chiral universality class. This
contradicts previous three-loop field-theoretical results but is in agreement
with experiments.Comment: 4 pages, RevTe
Pores in Bilayer Membranes of Amphiphilic Molecules: Coarse-Grained Molecular Dynamics Simulations Compared with Simple Mesoscopic Models
We investigate pores in fluid membranes by molecular dynamics simulations of
an amphiphile-solvent mixture, using a molecular coarse-grained model. The
amphiphilic membranes self-assemble into a lamellar stack of amphiphilic
bilayers separated by solvent layers. We focus on the particular case of
tension less membranes, in which pores spontaneously appear because of thermal
fluctuations. Their spatial distribution is similar to that of a random set of
repulsive hard discs. The size and shape distribution of individual pores can
be described satisfactorily by a simple mesoscopic model, which accounts only
for a pore independent core energy and a line tension penalty at the pore
edges. In particular, the pores are not circular: their shapes are fractal and
have the same characteristics as those of two dimensional ring polymers.
Finally, we study the size-fluctuation dynamics of the pores, and compare the
time evolution of their contour length to a random walk in a linear potential
Critical behavior of frustrated systems: Monte Carlo simulations versus Renormalization Group
We study the critical behavior of frustrated systems by means of Pade-Borel
resummed three-loop renormalization-group expansions and numerical Monte Carlo
simulations. Amazingly, for six-component spins where the transition is second
order, both approaches disagree. This unusual situation is analyzed both from
the point of view of the convergence of the resummed series and from the
possible relevance of non perturbative effects.Comment: RevTex, 10 pages, 3 Postscript figure
Charge orderings in the atomic limit of the extended Hubbard model
The extended Hubbard model in the atomic limit (AL-EHM) on a square lattice
with periodic boundary conditions is studied with use of the Monte Carlo (MC)
method. Within the grand canonical ensemble the phase and order-order
boundaries for charge orderings are obtained. The phase diagrams include three
types of charge ordered phases and the nonordered phase. The system exhibits
very rich structure and shows unusual multicritical behavior. In the limiting
case of tij = 0, the EHM is equivalent to the pseudospin model with single-ion
anisotropy 1/2U, exchange interaction W in an effective magnetic field
(mu-1/2U-zW). This classical spin model is analyzed using the MC method for the
canonical ensemble. The phase diagram is compared with the known results for
the Blume-Capel model.Comment: 9 pages, 10 figure
Critical behavior of O(2)xO(N) symmetric models
We investigate the controversial issue of the existence of universality
classes describing critical phenomena in three-dimensional statistical systems
characterized by a matrix order parameter with symmetry O(2)xO(N) and
symmetry-breaking pattern O(2)xO(N) -> O(2)xO(N-2). Physical realizations of
these systems are, for example, frustrated spin models with noncollinear order.
Starting from the field-theoretical Landau-Ginzburg-Wilson Hamiltonian, we
consider the massless critical theory and the minimal-subtraction scheme
without epsilon expansion. The three-dimensional analysis of the corresponding
five-loop expansions shows the existence of a stable fixed point for N=2 and
N=3, confirming recent field-theoretical results based on a six-loop expansion
in the alternative zero-momentum renormalization scheme defined in the massive
disordered phase.
In addition, we report numerical Monte Carlo simulations of a class of
three-dimensional O(2)xO(2)-symmetric lattice models. The results provide
further support to the existence of the O(2)xO(2) universality class predicted
by the field-theoretical analyses.Comment: 45 pages, 20 figs, some additions, Phys.Rev.B in pres
Testing for Features in the Primordial Power Spectrum
Well-known causality arguments show that events occurring during or at the
end of inflation, associated with reheating or preheating, could contribute a
blue component to the spectrum of primordial curvature perturbations, with the
dependence k^3. We explore the possibility that they could be observably large
in CMB, LSS, and Lyman-alpha data. We find that a k^3 component with a cutoff
at some maximum k can modestly improve the fits (Delta chi^2=2.0, 5.4) of the
low multipoles (l ~ 10 - 50) or the second peak (l ~ 540) of the CMB angular
spectrum when the three-year WMAP data are used. Moreover, the results from
WMAP are consistent with the CBI, ACBAR, 2dFGRS, and SDSS data when they are
included in the analysis. Including the SDSS galaxy clustering power spectrum,
we find weak positive evidence for the k^3 component at the level of Delta chi'
= 2.4, with the caveat that the nonlinear evolution of the power spectrum may
not be properly treated in the presence of the k^3 distortion. To investigate
the high-k regime, we use the Lyman-alpha forest data (LUQAS, Croft et al., and
SDSS Lyman-alpha); here we find evidence at the level Delta chi^2' = 3.8.
Considering that there are two additional free parameters in the model, the
above results do not give a strong evidence for features; however, they show
that surprisingly large bumps are not ruled out. We give constraints on the
ratio between the k^3 component and the nearly scale-invariant component, r_3 <
1.5, over the range of wave numbers 0.0023/Mpc < k < 8.2/Mpc. We also discuss
theoretical models which could lead to the k^3 effect, including ordinary
hybrid inflation and double D-term inflation models. We show that the
well-motivated k^3 component is also a good representative of the generic
spikelike feature in the primordial perturbation power spectrum.Comment: 23 pages, 6 figures; added new section on theoretical motivation for
k^3 term, and discussion of double D-term hybrid inflation models; title
changed, added a new section discussing the generic spikelike features,
published in IJMP
Monte Carlo renormalization group study of the Heisenberg and XY antiferromagnet on the stacked triangular lattice and the chiral model
With the help of the improved Monte Carlo renormalization-group scheme, we
numerically investigate the renormalization group flow of the antiferromagnetic
Heisenberg and XY spin model on the stacked triangular lattice (STA-model) and
its effective Hamiltonian, 2N-component chiral model which is used in
the field-theoretical studies. We find that the XY-STA model with the lattice
size exhibits clear first-order behavior. We also
find that the renormalization-group flow of STA model is well reproduced by the
chiral model, and that there are no chiral fixed point of
renormalization-group flow for N=2 and 3 cases. This result indicates that the
Heisenberg-STA model also undergoes first-order transition.Comment: v1:15 pages, 15 figures v2:updated references v3:added comments on
the higher order irrelevant scaling variables v4:added results of larger
sizes v5:final version to appear in J.Phys.Soc.Jpn Vol.72, No.
Chiral phase transitions: focus driven critical behavior in systems with planar and vector ordering
The fixed point that governs the critical behavior of magnets described by
the -vector chiral model under the physical values of () is
shown to be a stable focus both in two and three dimensions. Robust evidence in
favor of this conclusion is obtained within the five-loop and six-loop
renormalization-group analysis in fixed dimension. The spiral-like approach of
the chiral fixed point results in unusual crossover and near-critical regimes
that may imitate varying critical exponents seen in physical and computer
experiments.Comment: 4 pages, 5 figures. Discussion enlarge
Nonperturbative renormalization group approach to frustrated magnets
This article is devoted to the study of the critical properties of classical
XY and Heisenberg frustrated magnets in three dimensions. We first analyze the
experimental and numerical situations. We show that the unusual behaviors
encountered in these systems, typically nonuniversal scaling, are hardly
compatible with the hypothesis of a second order phase transition. We then
review the various perturbative and early nonperturbative approaches used to
investigate these systems. We argue that none of them provides a completely
satisfactory description of the three-dimensional critical behavior. We then
recall the principles of the nonperturbative approach - the effective average
action method - that we have used to investigate the physics of frustrated
magnets. First, we recall the treatment of the unfrustrated - O(N) - case with
this method. This allows to introduce its technical aspects. Then, we show how
this method unables to clarify most of the problems encountered in the previous
theoretical descriptions of frustrated magnets. Firstly, we get an explanation
of the long-standing mismatch between different perturbative approaches which
consists in a nonperturbative mechanism of annihilation of fixed points between
two and three dimensions. Secondly, we get a coherent picture of the physics of
frustrated magnets in qualitative and (semi-) quantitative agreement with the
numerical and experimental results. The central feature that emerges from our
approach is the existence of scaling behaviors without fixed or pseudo-fixed
point and that relies on a slowing-down of the renormalization group flow in a
whole region in the coupling constants space. This phenomenon allows to explain
the occurence of generic weak first order behaviors and to understand the
absence of universality in the critical behavior of frustrated magnets.Comment: 58 pages, 15 PS figure
Critical behavior of the frustrated antiferromagnetic six-state clock model on a triangular lattice
We study the anti-ferromagnetic six-state clock model with nearest neighbor
interactions on a triangular lattice with extensive Monte-Carlo simulations. We
find clear indications of two phase transitions at two different temperatures:
Below a chirality order sets in and by a thorough finite size scaling
analysis of the specific heat and the chirality correlation length we show that
this transition is in the Ising universality class (with a non-vanishing
chirality order parameter below ). At the spin-spin
correlation length as well as the spin susceptibility diverges according to a
Kosterlitz-Thouless (KT) form and spin correlations decay algebraically below
. We compare our results to recent x-ray diffraction experiments on the
orientational ordering of CFBr monolayers physisorbed on graphite. We argue
that the six-state clock model describes the universal feature of the phase
transition in the experimental system and that the orientational ordering
belongs to the KT universality class.Comment: 8 pages, 9 figure
- …
