132 research outputs found

    Significant Miocene larger foraminifera from South Central Java

    Get PDF
    The Gunung Sewu area of South Central Java, Indonesia during Mid Miocene, Langhian-Serravallian (Tf1-Tf2), was deposited in a large area of warm, very shallow-marine water. Coralline algae and abundant larger benthic foraminifera dominate the carbonate lithologies. Larger benthic foraminifera from previously unstudied sections in South Central Java are described and figured. They have led to an understanding of sequence stratigraphic and facies relationship of Miocene carbonates in Indonesia. Thirteen larger foraminifera species are described and illustrated. A detailed biostratigraphical studies of The phylogeny Katacycloclypeus annulatus - K. martini and the gradual evolution from Austrotrillina asmariensis into A. howchini are recognised. Analysis of the larger benthic foraminifera has allowed accurate dating of the carbonate sections studied using the East Indian Letter Classification

    A new model for the formation of microbial polygons in a coastal sabkha setting

    Get PDF
    The stratigraphic record of microbially induced sedimentary structures spans most of the depositional record. Today, microbes continue to generate, bind and modify sediments in a vast range of depositional environments. One of the most cited of these settings is the coastal microbial mat system of the Persian/Arabian Gulf. In this setting, an extensive zone of microbial mat polygons has previously been interpreted as resulting from desiccation‐related contraction during episodic drying. This study employs 15 years of field‐based monitoring of the interaction between environmental factors and the development and evolution of polygon morphologies to test the desiccation model in this setting. On the basis of these observations, a new model is proposed that accounts for the genesis and development of microbial polygons without the need for desiccation‐induced shrinkage. Conversely, the formation, development and erosion of microbial polygons is a direct result of the production of large amounts of organic matter in a healthy, yet spatially limited, microbial community. The recognition of microbial polygons has previously been applied as a diagnostic tool for the reconstruction of ancient depositional environments. The present study calls these interpretations into doubt. It is inferred that preservation of the microbial polygons as a recognizable form would be rare. Biological degradation and compaction will reduce polygons to produce the ‘wispy’ laminae that are a common feature of ancient sabkha lithofacies

    Late Quaternary sea-level changes of the Persian Gulf

    Get PDF
    Late Quaternary reflooding of the Persian Gulf climaxed with the mid-Holocene highstand previously variously dated between 6 and 3.4 ka. Examination of the stratigraphic and paleoenvironmental context of a mid- Holocenewhale beaching allows us to accurately constrain the timing of the transgressive, highstand and regressive phases of the mid- to late Holocene sea-level highstand in the Persian Gulf. Mid-Holocene transgression of the Gulf surpassed today's sea level by 7100–6890 cal yr BP, attaining a highstand of N1 m above current sea level shortly after 5290–4570 cal yr BP before falling back to current levels by 1440–1170 cal yr BP. The cetacean beached into an intertidal hardground pond during the transgressive phase (5300–4960 cal yr BP) with continued transgression interring the skeleton in shallow-subtidal sediments. Subsequent relative sea-level fall produced a forced regression with consequent progradation of the coastal system. These new ages refine previously reported timings for the mid- to late Holocene sea-level highstand published for other regions. By so doing, they allow us to constrain the timing of this correlatable global eustatic event more accurately

    Testing and Modeling Ethernet Switches and Networks for Use in ATLAS High-level Triggers

    Get PDF
    The ATLAS second level trigger will use a multi-layered LAN network to transfer 5 Gbyte/s detector data from ~1500 buffers to a few hundred processors. A model of the network has been constructed to evaluate its performance. A key component of the network model is a model of an individual switch, reproducing the behavior measured in real devices. A small number of measurable parameters are used to model a variety of commercial Ethernet switches. Using parameters measured on real devices, the impact on the overall network performance is modeled. In the Atlas context, both 100 Mbit and Gigabit Ethernet links are required. A system is described which is capable of characterizing the behavior of commercial switches with the required number of nodes under traffic conditions resembling those to be encountered in the Atlas experiment. Fast Ethernet traffic is provided by a high density, custom built tester based on FPGAs, programmed in Handel-C and VHDL, while the Gigabit Ethernet traffic is generated using Alteon NICs with custom firmware. The system is currently being deployed with 32 100Mbit ports and 16 Gigabit ports, and will be expanded to ~256 nodes of 100 Mbit and ~50 GBE nodes

    Evaluación del curso apreciación de las artes

    Get PDF
    Tesis ( Maestría en Enseñanza Superior) U.A.N.L.UANLhttp://www.uanl.mx

    Coming to light: How effective are sediment gravity flows in removing fine suspended carbonate from reefs?

    Get PDF
    Coral reefs are hard calcified structures, mainly found in warm tropical water. These ecosystems serve important roles as, for example, a source of food, shelter and nursery for different organisms, and in coastal protection. Reef‐building organisms have evolved to inhabit a narrow ecological niche and thus are particularly susceptible to rapid changes in their environment, for example, under predicted climate‐change scenarios. Anthropogenic climate change is widely accepted as the leading cause of rising ocean temperatures, sea water acidity and sedimentation rate, which all affect a coral's productivity, health and, to some extent, skeletal strength. High‐energy weather events, such as storms and hurricanes, can erode reefs, thereby increasing the amount of suspended sediment and consequently the turbidity of the water. The removal of suspended sediment from the reef is vital for the health of reef producers, and a natural process that removes suspended sediment from reefs are sediment gravity flows. A key factor that controls the ability of sediment gravity flows to transport sediment is cohesion, as cohesion determines the run‐out distance of a flow through changes in its rheological properties. This study examines the cohesive nature of sediment gravity flows laden with fine‐grained CaCO3. These gravity flows laden with mud‐grade calcite are compared with flows carrying non‐cohesive, silt‐sized, silica flour, weakly cohesive kaolinite clay and strongly cohesive bentonite clay, by means of laboratory experiments. The results of these experiments show that the mud‐grade calcite flows behave more akin to the silica‐flour flows by reaching maximum mobility at considerably higher volumetric suspended sediment concentrations (47% for silica flour and 53% for CaCO3) than the kaolinite and bentonite flows (22% for kaolinite and 16% for bentonite). Fine CaCO3 gravity flows can therefore be regarded as physically non‐cohesive, and their high mobility may constitute an effective mechanism for removing suspended sediment from coral reefs, especially at locations where a slope gradient is present, such as at the reef front and forereef. However, biological cohesion, caused by ‘sticky’ extracellular polymer substances produced by micro‐organisms, can render mud‐grade calcite cohesive and sediment gravity flows less mobile. The present study should therefore be seen as a first step towards a more comprehensive analysis of the efficiency of removal of suspended sediment from coral reefs

    Coming to light: how effective are sediment gravity flows in removing fine suspended carbonate from reefs?

    Get PDF
    Coral reefs are hard calcified structures, mainly found in warm tropical water. These ecosystems serve important roles as, for example, a source of food, shelter and nursery for different organisms, and in coastal protection. Reef-building organisms have evolved to inhabit a narrow ecological niche and thus are particularly susceptible to rapid changes in their environment, for example, under predicted climate-change scenarios. Anthropogenic climate change is widely accepted as the leading cause of rising ocean temperatures, sea water acidity and sedimentation rate, which all affect a coral's productivity, health and, to some extent, skeletal strength. High-energy weather events, such as storms and hurricanes, can erode reefs, thereby increasing the amount of suspended sediment and consequently the turbidity of the water. The removal of suspended sediment from the reef is vital for the health of reef producers, and a natural process that removes suspended sediment from reefs are sediment gravity flows. A key factor that controls the ability of sediment gravity flows to transport sediment is cohesion, as cohesion determines the run-out distance of a flow through changes in its rheological properties. This study examines the cohesive nature of sediment gravity flows laden with fine-grained CaCO3. These gravity flows laden with mud-grade calcite are compared with flows carrying non-cohesive, silt-sized, silica flour, weakly cohesive kaolinite clay and strongly cohesive bentonite clay, by means of laboratory experiments. The results of these experiments show that the mud-grade calcite flows behave more akin to the silica-flour flows by reaching maximum mobility at considerably higher volumetric suspended sediment concentrations (47% for silica flour and 53% for CaCO3) than the kaolinite and bentonite flows (22% for kaolinite and 16% for bentonite). Fine CaCO3 gravity flows can therefore be regarded as physically non-cohesive, and their high mobility may constitute an effective mechanism for removing suspended sediment from coral reefs, especially at locations where a slope gradient is present, such as at the reef front and forereef. However, biological cohesion, caused by ‘sticky’ extracellular polymer substances produced by micro-organisms, can render mud-grade calcite cohesive and sediment gravity flows less mobile. The present study should therefore be seen as a first step towards a more comprehensive analysis of the efficiency of removal of suspended sediment from coral reefs

    Calcitization of aragonitic bryozoans in Cenozoic tropical carbonates from East Kalimantan, Indonesia

    Get PDF
    © The Author(s) 2016. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The file attached is the published version of the article

    Middle Ordovician Upwelling-Related Ironstone of North Wales: Coated Grains, Ocean Chemistry, and Biological Evolution

    Get PDF
    Middle Ordovician phosphatic ironstone of the Welsh Basin provides new insight into the paleoenvironmental significance of ironstone and Ordovician ocean chemistry. Deposition occurred in a back-arc basin along the southern margin of Avalonia as the Rheic Ocean opened to the south. Ironstone is interpreted to have accumulated as part of an aggradational parasequence on a storm-dominated shelf with coastal upwelling. This parasequence has a laminated pyritic mudstone base that grades upward into variably bioturbated mudstone and coated grain-rich, intraclastic ironstone, which is overlain in turn by cross-stratified grainstone composed entirely of coated Fe grains. A coarser clastic parasequence composed of more proximal lithofacies rests conformably above and suggests the contact between the two parasequences is a maximum flooding surface marking the onset of highstand conditions. Lithofacies associations suggest that sustained coastal upwelling created a wedge of nutrient-rich, ferruginous seawater on the middle shelf that stimulated high surface ocean productivities. Large, coated Fe grains (granule size) composed of discontinuous and concentric carbonate fluorapatite, hematite, and chamosite cortical layers record fluctuations in pore water Eh that are interpreted to have been related to changes in upwelling intensity and intermittent storm reworking of the seafloor. Results support an emerging model for Ordovician ironstone underpinned by the development of ferruginous bottom water that was periodically tapped by coastal upwelling. Expanding, semi-restricted seaways such as the Rheic Ocean were ideal locations for the ponding of this anoxic, hydrothermally enriched seawater, especially during the early Paleozoic when the deep ocean was variably and inconsistently oxygenated. The coincidence of ironstone depositional episodes with graptolite diversification events suggests that, in addition to Fe, the sustained supply of upwelling-related P may have driven the radiation of some planktonic ecosystems during the Great Ordovician Biodiversification Event. Concomitant minor extinctions of benthic trilobites occurred as these ferruginous waters impinged on the shelf
    corecore