538 research outputs found

    Aurora-A Mitotic Kinase Induces Endocrine Resistance through Down-Regulation of ERα Expression in Initially ERα+ Breast Cancer Cells

    Get PDF
    Development of endocrine resistance during tumor progression represents a major challenge in the management of estrogen receptor alpha (ERα) positive breast tumors and is an area under intense investigation. Although the underlying mechanisms are still poorly understood, many studies point towards the ‘cross-talk’ between ERα and MAPK signaling pathways as a key oncogenic axis responsible for the development of estrogen-independent growth of breast cancer cells that are initially ERα+ and hormone sensitive. In this study we employed a metastatic breast cancer xenograft model harboring constitutive activation of Raf-1 oncogenic signaling to investigate the mechanistic linkage between aberrant MAPK activity and development of endocrine resistance through abrogation of the ERα signaling axis. We demonstrate for the first time the causal role of the Aurora-A mitotic kinase in the development of endocrine resistance through activation of SMAD5 nuclear signaling and down-regulation of ERα expression in initially ERα+ breast cancer cells. This contribution is highly significant for the treatment of endocrine refractory breast carcinomas, because it may lead to the development of novel molecular therapies targeting the Aurora-A/SMAD5 oncogenic axis. We postulate such therapy to result in the selective eradication of endocrine resistant ERαlow/− cancer cells from the bulk tumor with consequent benefits for breast cancer patients

    Novel role of VMP1 as modifier of the pancreatic tumor cell response to chemotherapeutic drugs

    Get PDF
    We hypothesized that inhibiting molecules that mediate the adaptation response to cellular stress can antagonize the resistance of pancreatic cancer cells to chemotherapeutic drugs. Toward this end, here, we investigated how VMP1, a stress-induced autophagy-associated protein, modulate stress responses triggered by chemotherapeutic agents in PDAC. We find that VMP1 is particularly over-expressed in poorly differentiated human pancreatic cancer. Pharmacological studies show that drugs that work, in part, via the endoplasmic reticulum stress response, induce VMP1 expression. Similarly, VMP1 is induced by known endoplasmic reticulum stress activators. Genetic inactivation of VMP1 using RNAi-based antagonize the pancreatic cancer stress response to antitumoral agents. Functionally, we find that VMP1 regulates both autophagy and chemotherapeutic resistance even in the presence of chloroquin, ATG5 or Beclin 1 siRNAs, or a Beclin 1-binding VMP1 mutant. In addition, VMP1 modulates endoplasmic reticulum stress independently of its coupling to the molecular and cellular autophagy machinery. Preclinical studies demonstrate that xenografts expressing an inducible and tractable form of VMP1 show increased resistance to the gemcitabine treatment. These results underscore a novel role for VMP1 as a potential therapeutic target for combinatorial therapies aimed at sensitizing pancreatic cancer cells to chemotherapeutic agents as well as provide novel molecular mechanisms to better understand this phenomenon.Fil: Gilabert, Mariana. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Vaccaro, Maria Ines. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular; ArgentinaFil: Fernandez Zapico, Martín E.. Mayo Clinic Cancer Center; Estados UnidosFil: Calvo, Ezequiel L.. Molecular Endocrinology and Oncology Research Center; CanadáFil: Turrini, Olivier. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Secq, Véronique. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Garcia, Stéphanie. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Moutardier, Vincent. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Lomberk, Gwen. Mayo Clinic; Estados UnidosFil: Dusetti, Nelson. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; FranciaFil: Urrutia, Raul. Mayo Clinic; Estados UnidosFil: Iovanna, Juan L.. Cancer Research Center of Marseille; Francia. Aix-Marseille University; Francia. Centre National de la Recherche Scientifique; Franci

    Membrane-To-Nucleus Signaling Links Insulin-Like Growth Factor-1- and Stem Cell Factor-Activated Pathways

    Get PDF
    Stem cell factor (mouse: Kitl, human: KITLG) and insulin-like growth factor-1 (IGF1), acting via KIT and IGF1 receptor (IGF1R), respectively, are critical for the development and integrity of several tissues. Autocrine/paracrine KITLG-KIT and IGF1-IGF1R signaling are also activated in several cancers including gastrointestinal stromal tumors (GIST), the most common sarcoma. In murine gastric muscles, IGF1 promotes Kitl-dependent development of interstitial cells of Cajal (ICC), the non-neoplastic counterpart of GIST, suggesting cooperation between these pathways. Here, we report a novel mechanism linking IGF1-IGF1R and KITLG-KIT signaling in both normal and neoplastic cells. In murine gastric muscles, the microenvironment for ICC and GIST, human hepatic stellate cells (LX-2), a model for cancer niches, and GIST cells, IGF1 stimulated Kitl/KITLG protein and mRNA expression and promoter activity by activating several signaling pathways including AKT-mediated glycogen synthase kinase-3β inhibition (GSK3i). GSK3i alone also stimulated Kitl/KITLG expression without activating mitogenic pathways. Both IGF1 and GSK3i induced chromatin-level changes favoring transcriptional activation at the Kitl promoter including increased histone H3/H4 acetylation and H3 lysine (K) 4 methylation, reduced H3K9 and H3K27 methylation and reduced occupancy by the H3K27 methyltransferase EZH2. By pharmacological or RNA interference-mediated inhibition of chromatin modifiers we demonstrated that these changes have the predicted impact on KITLG expression. KITLG knock-down and immunoneutralization inhibited the proliferation of GIST cells expressing wild-type KIT, signifying oncogenic autocrine/paracrine KITLG-KIT signaling. We conclude that membrane-to-nucleus signaling involving GSK3i establishes a previously unrecognized link between the IGF1-IGF1R and KITLG-KIT pathways, which is active in both physiologic and oncogenic contexts and can be exploited for therapeutic purposes

    The Enduring Value of Research in Medical Education

    Get PDF
    Evidence-based medicine (EBM) relies on scientific data to guide diagnosis and treatment and is recognized as the current paradigm in medicine. Accordingly, every current and future physician should be knowledgeable about its principles and methodologies. Embracing research and EBM is essential to modern clinical practice; however, trainees and physicians still struggle with the value of research-related courses and knowledge on epidemiology and research methodology is often poor. In this article we provide a cogent discussion of the importance of research as an indispensable discipline in medical education through a detailed analysis of the literature. We review the evolution of medicine towards EBM and discuss the myriad of benefits that research has on medical careers, leadership roles, mentoring relationships, social networking, and personal growth and development. Participation in research contributes to medicine, public health, and society while simultaneously allowing the achievement of a high level of personal satisfactio

    Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells

    Get PDF
    Background: Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results: Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1aα, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions: We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state

    Targeting the Stress-Induced Protein NUPR1 to Treat Pancreatic Adenocarcinoma

    Get PDF
    Cancer cells activate stress-response mechanisms to adapt themselves to a variety of stressful conditions. Among these protective mechanisms, those controlled by the stress-induced nuclear protein 1 (NUPR1 ) belong to the most conserved ones. NUPR1 is an 82-residue-long, monomeric, basic and intrinsically disordered protein (IDP), which was found to be invariably overexpressed in some, if not all, cancer tissues. Remarkably, we and others have previously showed that genetic inactivation of the Nupr1 gene antagonizes the growth of pancreatic cancer as well as several other tumors. With the use of a multidisciplinary strategy by combining biophysical, biochemical, bioinformatic, and biological approaches, a trifluoperazine-derived compound, named ZZW-115, has been identified as an inhibitor of the NUPR1 functions. The anticancer activity of the ZZW-115 was first validated on a large panel of cancer cells. Furthermore, ZZW-115 produced a dose-dependent tumor regression of the tumor size in xenografted mice. Mechanistically, we have demonstrated that NUPR1 binds to several importins. Because ZZW-115 binds NUPR1 through the region around the amino acid Thr68, which is located into the nuclear location signal (NLS) region of the protein, we demonstrated that treatment with ZZW-115 inhibits completely the translocation of NUPR1 from the cytoplasm to the nucleus by competing with importins

    Functional Characterization of Nupr1L, A Novel p53-Regulated Isoform of the High-Mobility Group (HMG)-Related Protumoral Protein Nupr1

    Get PDF
    We have previously demonstrated a crucial role of nuclear protein 1 (NUPR1) in tumor development and progression. In this work, we report the functional characterization of a novel Nupr1-like isoform (NUPR1L) and its functional interaction with the protumoral factor NUPR1. Through the use of primary sequence analysis, threading, and homology-based molecular modeling, as well as expression and immunolocalization, studies reveal that NUPR1L displays properties, which are similar to member of the HMG-like family of chromatin regulators, including its ability to translocate to the cell nucleus and bind to DNA. Analysis of the NUPR1L promoter showed the presence of two p53-response elements at positions -37 and -7, respectively. Experiments using reporter assays combined with site-directed mutagenesis and using cells with controllable p53 expression demonstrate that both of these sequences are responsible for the regulation of NUPR1L expression by p53. Congruently, NUPR1L gene expression is activated in response to DNA damage induced by oxaliplatin treatment or cell cycle arrest induced by serum starvation, two well-validated methods to achieve p53 activation. Interestingly, expression of NUPR1L downregulates the expression of NUPR1, its closely related protumoral isoform, by a mechanism that involves the inhibition of its promoter activity. At the cellular level, overexpression of NUPR1L induces G1 cell cycle arrest and a decrease in their cell viability, an effect that is mediated, at least in part, by downregulating NUPR1 expression. Combined, these experiments constitute the first functional characterization of NUPR1L as a new p53-induced gene, which negatively regulates the protumoral factor NUPR1.Fil: Lopez, Maria Belen. Centre de Recherche En Cancerologie de Marseille; FranciaFil: Garcia, Maria Noé. Centre de Recherche En Cancerologie de Marseille; FranciaFil: Grasso, Daniel Hector. Centre de Recherche En Cancerologie de Marseille; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bintz, Jennifer. Centre de Recherche En Cancerologie de Marseille; FranciaFil: Molejon, Maria Ines. Centre de Recherche En Cancerologie de Marseille; Francia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Velez, Gabriel. Mayo Clinic; Estados UnidosFil: Lomberk, Gwen. Mayo Clinic; Estados UnidosFil: Neira, Jose Luis. Universidad de Miguel Hernández; EspañaFil: Urrutia, Raul. Mayo Clinic; Estados UnidosFil: Iovanna, Juan. Centre de Recherche En Cancerologie de Marseille; Franci

    The p38 MAPK family, a pushmi-pullyu of skeletal muscle differentiation

    Get PDF
    In this issue, Gillespie et al. (Gillespie et al. 2009. J. Cell Biol. doi:10.1083/jcb.200907037) demonstrate that the mitogen-activated protein kinase isoform p38-γ plays a crucial role in blocking the premature differentiation of satellite cells, a skeletal muscle stem cell population. p38-γ puts the brakes on skeletal muscle differentiation by promoting the association of the transcription factor MyoD with the histone methyltransferase, KMT1A, which act together in a complex to repress the premature expression of the gene encoding the myogenic transcription factor Myogenin

    Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes

    Get PDF
    Increasing experimental evidence shows a prominent role of histone modifications in the coordinated control of gene expression in the human malaria parasite Plasmodium falciparum. The search for the histone-mark-reading machinery that translates histone modifications into biological processes, such as formation of heterochromatin and antigenic variation is of foremost importance. In this work, we identified the first member of a histone modification specific recognition protein, an orthologue of heterochromatin protein 1 (PfHP1). Analysis of the PfHP1 amino-acid sequence revealed the presence of the two characteristic HP1 domains: a chromodomain (CD) and a chromo shadow domain (CSD). Recombinant CD binds to di- and tri-methylated lysine 9 from histone H3, but not to unmodified or methylated histone H3 in lysine 4. PfHP1 is able to interact with itself to form dimers, underlying its potential role in aggregating nucleosomes to form heterochromatin. Antibodies raised against PfHP1 detect this molecule in foci at the perinuclear region. ChIP analysis using anti-PfHP1 shows that this protein is linked to heterochromatin of subtelomeric non-coding repeat regions and monoallelic expression of the major virulence var gene family. This is the first report implicating an HP1 protein in the control of antigenic variation of a protozoan parasite
    corecore