620 research outputs found
Phenomenological Lambda-Nuclear Interactions
Variational Monte Carlo calculations for (ground and
excited states) and are performed to decipher information on
-nuclear interactions. Appropriate operatorial nuclear and
-nuclear correlations have been incorporated to minimize the
expectation values of the energies. We use the Argonne two-body
NN along with the Urbana IX three-body NNN interactions. The study demonstrates
that a large part of the splitting energy in () is
due to the three-body NN forces. hypernucleus is
analyzed using the {\it s}-shell results. binding to nuclear matter
is calculated within the variational framework using the
Fermi-Hypernetted-Chain technique. There is a need to correctly incorporate the
three-body NN correlations for binding to nuclear matter.Comment: 18 pages (TeX), 2 figure
Four-Body Bound State Calculations in Three-Dimensional Approach
The four-body bound state with two-body interactions is formulated in
Three-Dimensional approach, a recently developed momentum space representation
which greatly simplifies the numerical calculations of few-body systems without
performing the partial wave decomposition. The obtained three-dimensional
Faddeev-Yakubovsky integral equations are solved with two-body potentials.
Results for four-body binding energies are in good agreement with achievements
of the other methods.Comment: 29 pages, 2 eps figures, 8 tables, REVTeX
Spin-Isospin Structure and Pion Condensation in Nucleon Matter
We report variational calculations of symmetric nuclear matter and pure
neutron matter, using the new Argonne v18 two-nucleon and Urbana IX
three-nucleon interactions. At the equilibrium density of 0.16 fm^-3 the
two-nucleon densities in symmetric nuclear matter are found to exhibit a
short-range spin-isospin structure similar to that found in light nuclei. We
also find that both symmetric nuclear matter and pure neutron matter undergo
transitions to phases with pion condensation at densities of 0.32 fm^-3 and 0.2
fm^-3, respectively. Neither transtion occurs with the Urbana v14 two-nucleon
interaction, while only the transition in neutron matter occurs with the
Argonne v14 two-nucleon interaction. The three-nucleon interaction is required
for the transition to occur in symmetric nuclear matter, whereas the the
transition in pure neutron matter occurs even in its absence. The behavior of
the isovector spin-longitudinal response and the pion excess in the vicinity of
the transition, and the model dependence of the transition are discussed.Comment: 44 pages RevTeX, 15 postscript figures. Minor modifications to
original postin
Acoustic radiation controls friction: Evidence from a spring-block experiment
Brittle failures of materials and earthquakes generate acoustic/seismic waves
which lead to radiation damping feedbacks that should be introduced in the
dynamical equations of crack motion. We present direct experimental evidence of
the importance of this feedback on the acoustic noise spectrum of
well-controlled spring-block sliding experiments performed on a variety of
smooth surfaces. The full noise spectrum is quantitatively explained by a
simple noisy harmonic oscillator equation with a radiation damping force
proportional to the derivative of the acceleration, added to a standard viscous
term.Comment: 4 pages including 3 figures. Replaced with version accepted in PR
Centrality and transverse momentum dependence of elliptic flow of multi-strange hadrons and meson in Au+Au collisions at = 200 GeV
We present high precision measurements of elliptic flow near midrapidity
() for multi-strange hadrons and meson as a function of
centrality and transverse momentum in Au+Au collisions at center of mass energy
200 GeV. We observe that the transverse momentum dependence of
and is similar to that of and , respectively,
which may indicate that the heavier strange quark flows as strongly as the
lighter up and down quarks. This observation constitutes a clear piece of
evidence for the development of partonic collectivity in heavy-ion collisions
at the top RHIC energy. Number of constituent quark scaling is found to hold
within statistical uncertainty for both 0-30 and 30-80 collision
centrality. There is an indication of the breakdown of previously observed mass
ordering between and proton at low transverse momentum in the
0-30 centrality range, possibly indicating late hadronic interactions
affecting the proton .Comment: 7 pages and 4 figures, Accepted for publication in Physical Review
Letter
Observation of meson nuclear modifications in Au+Au collisions at = 200 GeV
We report the first measurement of charmed-hadron () production via the
hadronic decay channel () in Au+Au collisions at
= 200\,GeV with the STAR experiment. The charm
production cross-section per nucleon-nucleon collision at mid-rapidity scales
with the number of binary collisions, , from + to central Au+Au
collisions. The meson yields in central Au+Au collisions are strongly
suppressed compared to those in + scaled by , for transverse
momenta GeV/, demonstrating significant energy loss of charm
quarks in the hot and dense medium. An enhancement at intermediate is
also observed. Model calculations including strong charm-medium interactions
and coalescence hadronization describe our measurements.Comment: 7 pages including author list, 4 figures, submit to PRL with revised
versio
- …
