48,115 research outputs found
A General SU(2) Formulation for Quantum Searching with Certainty
A general quantum search algorithm with arbitrary unitary transformations and
an arbitrary initial state is considered in this work. To serach a marked state
with certainty, we have derived, using an SU(2) representation: (1) the
matching condition relating the phase rotations in the algorithm, (2) a concise
formula for evaluating the required number of iterations for the search, and
(3) the final state after the search, with a phase angle in its amplitude of
unity modulus. Moreover, the optimal choices and modifications of the phase
angles in the Grover kernel is also studied.Comment: 8 pages, 2 figure
Recommended from our members
Rapid Manufactured Textiles
Rapid Manufacturing (RM) is increasingly becoming a viable manufacturing process due
to dramatic advantages that are achievable in the area of design complexity. Through the
exploration of the design freedom, this paper introduces the concept of manufacturing textiles for
potential smart and high performance textile applications. This paper discusses the current
limitations associated with the manufacture of textiles through RM and presents a novel
methodology for the generation of 3D conformal RM textile articles. The paper concludes that
through RM it is entirely possible to manufacture a structure that incorporates drape and free
movement properties directly comparable to conventional textiles.Mechanical Engineerin
New Experimental Limit on the Electric Dipole Moment of the Electron in a Paramagnetic Insulator
We report results of an experimental search for the intrinsic Electric Dipole
Moment (EDM) of the electron using a solid-state technique. The experiment
employs a paramagnetic, insulating gadolinium gallium garnet (GGG) that has a
large magnetic response at low temperatures. The presence of the eEDM would
lead to a small but non-zero magnetization as the GGG sample is subject to a
strong electric field. We search for the resulting Stark-induced magnetization
with a sensitive magnetometer. Recent progress on the suppression of several
sources of background allows the experiment to run free of spurious signals at
the level of the statistical uncertainties. We report our first limit on the
eEDM of 10ecm with 5 days of
data averaging.Comment: 9 pages, 9 figures, Revtex 4.
Self-interacting dark matter and Higgs bosons in the SU(3)_C x SU(3)_L x U(1)_N model with right-handed neutrinos
We investigate the possibility that dark matter could be made from CP-even
and CP- odd Higgs bosons in the SU(3)_C X SU(3)_L X U(1)_N (3-3-1) model with
right-handed neutrinos. This self-interacting dark matters are stable without
imposing of new symmetry and should be weak-interacting.Comment: 7 pages, Latex, To appear in Europhys. Let
Creation of Entanglement between Two Electron Spins Induced by Many Spin Ensemble Excitations
We theoretically explore the possibility of creating spin entanglement by
simultaneously coupling two electronic spins to a nuclear ensemble. By
microscopically modeling the spin ensemble with a single mode boson field, we
use the time-dependent Fr\"{o}hlich transformation (TDFT) method developed most
recently [Yong Li, C. Bruder, and C. P. Sun, Phys. Rev. A \textbf{75}, 032302
(2007)] to calculate the effective coupling between the two spins. Our
investigation shows that the total system realizes a solid state based
architecture for cavity QED. Exchanging such kind effective boson in a virtual
process can result in an effective interaction between two spins. It is
discovered that a maximum entangled state can be obtained when the velocity of
the electrons matches the initial distance between them in a suitable way.
Moreover, we also study how the number of collective excitations influences the
entanglement. It is shown that the larger the number of excitation is, the less
the two spins entangle each other.Comment: 8 pages, 4 figure
Using Muonic Hydrogen in Optical Spectroscopy Experiment to Detect Extra Dimensions
Considering that gravitational force might deviate from Newton's
inverse-square law (ISL) and become much stronger in small scale, we propose a
kind of optical spectroscopy experiment to detect this possible deviation and
take electronic, muonic and tauonic hydrogen atoms as examples. This experiment
might be used to indirectly detect the deviation of ISL down to nanometer scale
and to explore the possibility of three extra dimensions in ADD's model, while
current direct gravity tests cannot break through micron scale and go beyond
two extra dimensions scenario.Comment: 9 pages, 2 figures. To appear in IJT
- …
