4,695 research outputs found
Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing
We present large-scale reproducible
fabrication of multifunctional ultrasharp metallic structures on planar
substrates with capabilities including magnetic field nanofocusing
and plasmonic sensing. Objects with sharp tips such as wedges and
pyramids made with noble metals have been extensively used for enhancing
local electric fields via the lightning-rod effect or plasmonic nanofocusing.
However, analogous nanofocusing of magnetic fields using sharp tips
made with magnetic materials has not been widely realized. Reproducible
fabrication of sharp tips with magnetic as well as noble metal layers
on planar substrates can enable straightforward application of their
material and shape-derived functionalities. We use a template-stripping
method to produce plasmonic-shell-coated nickel wedge and pyramid
arrays at the wafer-scale with tip radius of curvature close to 10
nm. We further explore the magnetic nanofocusing capabilities of these
ultrasharp substrates, deriving analytical formulas and comparing
the results with computer simulations. These structures exhibit nanoscale
spatial control over the trapping of magnetic microbeads and nanoparticles
in solution. Additionally, enhanced optical sensing of analytes by
these plasmonic-shell-coated substrates is demonstrated using surface-enhanced
Raman spectroscopy. These methods can guide the design and fabrication
of novel devices with applications including nanoparticle manipulation,
biosensing, and magnetoplasmonics
The planning and control of multiple task work: a study of secretarial office administration
This paper reports an attempt to construct a design-oriented model of the planning and control of multiple task work (PCMT) based on observations of secretarial office administration (SOA). The model is design-oriented in that it is intended to assist a designer to reason about the behaviours of an interactive human-computer worksystem; in this case, the planning and control behaviours of worksystems which carry out multiple task work. Design-oriented models of engineering contrast with the understanding-oriented models of science, which offer an understanding of phenomena in the form of their explanation and prediction
Recommended from our members
Cooperative Carbon Dioxide Adsorption in Alcoholamine- and Alkoxyalkylamine-Functionalized Metal-Organic Frameworks.
A series of structurally diverse alcoholamine- and alkoxyalkylamine-functionalized variants of the metal-organic framework Mg2 (dobpdc) are shown to adsorb CO2 selectively via cooperative chain-forming mechanisms. Solid-state NMR spectra and optimized structures obtained from van der Waals-corrected density functional theory calculations indicate that the adsorption profiles can be attributed to the formation of carbamic acid or ammonium carbamate chains that are stabilized by hydrogen bonding interactions within the framework pores. These findings significantly expand the scope of chemical functionalities that can be utilized to design cooperative CO2 adsorbents, providing further means of optimizing these powerful materials for energy-efficient CO2 separations
Pseudo-Killing Spinors, Pseudo-supersymmetric p-branes, Bubbling and Less-bubbling AdS Spaces
We consider Einstein gravity coupled to an n-form field strength in D
dimensions. Such a theory cannot be supersymmetrized in general, we
nevertheless propose a pseudo-Killing spinor equation and show that the AdS X
Sphere vacua have the maximum number of pseudo-Killing spinors, and hence are
fully pseudo-supersymmetric. We show that extremal p-branes and their
intersecting configurations preserve fractions of the pseudo-supersymmetry. We
study the integrability condition for general (D,n) and obtain the additional
constraints that are required so that the existence of the pseudo-Killing
spinors implies the Einstein equations of motion. We obtain new
pseudo-supersymmetric bubbling AdS_5 X S^5 spaces that are supported by a
non-self-dual 5-form. This demonstrates that non-supersymmegtric conformal
field theories may also have bubbling states of arbitrary droplets of free
fermions in the phase space. We also obtain an example of less-bubbling AdS
geometry in D=8, whose bubbling effects are severely restricted by the
additional constraint arising from the integrability condition.Comment: typos corrected, extra comments and references added, version
appeared in JHE
A Distributional Approach for Measuring wage Discrimination and Occupational Discrimination Separately
Steps to improve gender diversity in the fields of coastal geosciences and engineering
Robust data are the base of effective gender diversity policy. Evidence shows that gender inequality is still pervasive in science, technology, engineering and mathematics (STEM). Coastal geoscience and engineering (CGE) encompasses professionals working on coastal processes, integrating expertise across physics, geomorphology, engineering, planning and management. The article presents novel results of gender inequality and experiences of gender bias in CGE, and proposes practical steps to address it. It analyses the gender representation in 9 societies, 25 journals, and 10 conferences in CGE and establishes that women represent 30% of the international CGE community, yet there is under-representation in prestige roles such as journal editorial board members (15% women) and conference organisers (18% women). The data show that female underrepresentation is less prominent when the path to prestige roles is clearly outlined and candidates can self-nominate or volunteer instead of the traditional invitation-only pathway. By analysing the views of 314 survey respondents (34% male, 65% female, and 1% ‘‘other’’), we show that 81% perceive the lack of female role models as a key hurdle for gender equity, and a significantly larger proportion of females (47%) felt held back in their careers due to their gender in comparison with males (9%). The lack of women in prestige roles and senior positions contributes to 81% of survey respondents perceiving the lack of female role models in CGE as a key hurdle for gender equality. While it is clear that having more women as role models is important, this is not enough to effect change. Here seven practical steps towards achieving gender equity in CGE are presented: (1) Advocate for more women in prestige roles; (2) Promote high-achieving females; (3) Create awareness of gender bias; (4) Speak up; (5) Get better support for return to work; (6) Redefine success; and, (7) Encourage more women to enter the discipline at a young age. Some of these steps can be successfully implemented immediately (steps 1–4), while others need institutional engagement and represent major societal overhauls. In any case, these seven practical steps require actions that can start immediately
Microcalorimetry and spectroscopic studies on the binding of dye janus green blue to deoxyribonucleic acid
The interaction of the phenazinium dye janus green blue (JGB) with deoxyribonucleic acid was investigated using isothermal titration calorimetry and thermal melting experiments. The calorimetric data were supplemented by spectroscopic studies. Calorimetry results suggested the binding affinity of the dye to DNA to be of the order of 105 M-1. The binding was predominantly entropy driven with a small negative favorable enthalpy contribution to the standard molar Gibbs energy change.The binding became weaker as the temperature and salt concentration was raised. The temperature dependence of the standard molar enthalpy changes yielded negative values of standard molar heat capacity change for the complexation revealing substantial hydrophobic contribution in the DNA binding. An enthalpy–entropy compensation behavior was also observed in the system. The salt dependence of the binding yielded the release of 0.69 number of cations on binding of each dye molecule. The non-polyelectrolytic contribution was found to be the predominant force in the binding interaction. Thermal melting studies revealed that the DNA helix was stabilized against denaturation by the dye. The binding was also characterized by absorbance, resonance light scattering and circular dichroism spectral measurements. The binding constants from the spectral results were close to those obtained from the calorimetric data. The energetic aspects of the interaction of the dye JGB to double stranded DNA are supported by strong binding revealed from the spectral data
Rapidity and Centrality Dependence of Proton and Anti-proton Production from Au+Au Collisions at sqrt(sNN) = 130GeV
We report on the rapidity and centrality dependence of proton and anti-proton
transverse mass distributions from Au+Au collisions at sqrt(sNN) = 130GeV as
measured by the STAR experiment at RHIC. Our results are from the rapidity and
transverse momentum range of |y|<0.5 and 0.35 <p_t<1.00GeV/c. For both protons
and anti-protons, transverse mass distributions become more convex from
peripheral to central collisions demonstrating characteristics of collective
expansion. The measured rapidity distributions and the mean transverse momenta
versus rapidity are flat within |y|<0.5. Comparisons of our data with results
from model calculations indicate that in order to obtain a consistent picture
of the proton(anti-proton) yields and transverse mass distributions the
possibility of pre-hadronic collective expansion may have to be taken into
account.Comment: 4 pages, 3 figures, 1 table, submitted to PR
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
